橢圓的標準方程共分兩種情況: 當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a^2-c^2=b^2。 推導:PF1+PF2>F1F2(P為橢圓上的點 F為焦點)。 雙曲線的標準方程分兩種情況: 焦點在X軸上時為:x^2/a^2-y^2/b^2=1,(a>0,b>0)。 焦點在Y軸上時為:y^2/a^2-x^2/b^2=1,(a>0,b>0)。 雙曲線的離心率為:e=c/a 雙曲線的焦點在y軸上的雙曲線的漸近線為:y=+-(a/b)*x。
拓展資料
平面內與兩定點F、F"的距離的和等於常數2a(2a>|FF"|的動點P的軌跡叫做橢圓。
即:│PF│+│PF"│=2a 其中兩定點F、F"叫做橢圓的焦點,兩焦點的距離│FF"│叫做橢圓的焦距。 平面上到定點F距離與到定直線間距離之比為常數的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是X=a^2/c)。
橢圓的其他定義根據橢圓的一條重要性質也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況
橢圓的標準方程有兩種,取決於焦點所在的座標軸: 1)焦點在X軸時,標準方程為:x^2/a^2+y^2/b^2=1 (a>b>0) 2)焦點在Y軸時,標準方程為:x^2/b^2+y^2/a^2=1 (a>b>0) 其中a>0,b>0。a、b中較大者為橢圓長半軸長,較短者為短半軸長(橢圓有兩條對稱軸,對稱軸被橢圓所截,有兩條線段,它們的一半分別叫橢圓的長半軸和短半軸或半長軸和半短軸)當a>b時,焦點在x軸上,焦距為2*(a^2-b^2)^0.5,焦距與長.短半軸的關係:b^2=a^2-c^2 ,準線方程是x=a^2/c和x=-a^2/c 又及:如果中心在原點,但焦點的位置不明確在X軸或Y軸時,方程可設為mx^2+ny^2=1(m>0,n>0,m≠n)。既標準方程的統一形式。
橢圓的面積是πab。橢圓可以看作圓在某方向上的拉伸,它的引數方程是:x=acosθ , y=bsinθ 標準形式的橢圓在x0,y0點的切線就是 : xx0/a^2+yy0/b^2=1 橢圓的面積公式 S=π(圓周率)×a×b(其中a,b分別是橢圓的長半軸,短半軸的長). 或S=π(圓周率)×A×B/4(其中A,B分別是橢圓的長軸,短軸的長).
橢圓的周長公式 橢圓周長沒有公式,有積分式或無限項展開式。 橢圓周長(L)的精確計算要用到積分或無窮級數的求和。如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [橢圓近似周長], 其中a為橢圓長半軸,e為離心率 橢圓離心率的定義為橢圓上的點到某焦點的距離和該點到該焦點對應的準線的距離之比,設橢圓上點P到某焦點距離為PF,到對應準線距離為PL,則 e=PF/PL
橢圓的準線方程 x=±a^2/C 橢圓的離心率公式 e=c/a(e<1,因為2a>2c) 橢圓的焦準距 :橢圓的焦點與其相應準線(如焦點(c,0)與準線x=+a^2/C)的距離,數值=b^2/c 橢圓焦半徑公式 |PF1|=a+ex0 |PF2|=a-ex0 橢圓過右焦點的半徑r=a-ex 過左焦點的半徑r=a+ex
橢圓的通徑:過焦點的垂直於x軸(或y軸)的直線與橢圓的兩交點A,B之間的距離,數值=2b^2/a 點與橢圓位置關係 點M(x0,y0) 橢圓 x^2/a^2+y^2/b^2=1 點在圓內: x0^2/a^2+y0^2/b^2<1 點在圓上: x0^2/a^2+y0^2/b^2=1 點在圓外: x0^2/a^2+y0^2/b^2>1 直線與橢圓位置關係 y=kx+m ① x^2/a^2+y^2/b^2=1 ② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相離△<0無交點 相交△>0 可利用弦長公式:A(x1,y1) B(x2,y2) |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2
橢圓通徑(定義:圓錐曲線(除圓外)中,過焦點並垂直於軸的弦)公式:2b^2/a 橢圓的斜率公式 過橢圓上x^2/a^2+y^2/b^2=1上一點(x,y)的切線斜率為 -(b^2)X/(a^2)y 雙曲線: 數學上指一動點移動於一個平面上,與平面上兩個定點F1,F2的距離之差的絕對值始終為一定值2a(2a小於F1和F2之間的距離即2a<2c)時所成的軌跡叫做雙曲線(Hyperbola)。兩個定點F1,F2叫做雙曲線的左,右焦點(focus)。兩焦點的距離叫焦距,長度為2c。其中2a在座標軸上的端點叫做頂點,c^2=a^2+b^2 (a=長半軸,b=短半軸)
橢圓的標準方程共分兩種情況: 當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a^2-c^2=b^2。 推導:PF1+PF2>F1F2(P為橢圓上的點 F為焦點)。 雙曲線的標準方程分兩種情況: 焦點在X軸上時為:x^2/a^2-y^2/b^2=1,(a>0,b>0)。 焦點在Y軸上時為:y^2/a^2-x^2/b^2=1,(a>0,b>0)。 雙曲線的離心率為:e=c/a 雙曲線的焦點在y軸上的雙曲線的漸近線為:y=+-(a/b)*x。
拓展資料
平面內與兩定點F、F"的距離的和等於常數2a(2a>|FF"|的動點P的軌跡叫做橢圓。
即:│PF│+│PF"│=2a 其中兩定點F、F"叫做橢圓的焦點,兩焦點的距離│FF"│叫做橢圓的焦距。 平面上到定點F距離與到定直線間距離之比為常數的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是X=a^2/c)。
橢圓的其他定義根據橢圓的一條重要性質也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況
橢圓的標準方程有兩種,取決於焦點所在的座標軸: 1)焦點在X軸時,標準方程為:x^2/a^2+y^2/b^2=1 (a>b>0) 2)焦點在Y軸時,標準方程為:x^2/b^2+y^2/a^2=1 (a>b>0) 其中a>0,b>0。a、b中較大者為橢圓長半軸長,較短者為短半軸長(橢圓有兩條對稱軸,對稱軸被橢圓所截,有兩條線段,它們的一半分別叫橢圓的長半軸和短半軸或半長軸和半短軸)當a>b時,焦點在x軸上,焦距為2*(a^2-b^2)^0.5,焦距與長.短半軸的關係:b^2=a^2-c^2 ,準線方程是x=a^2/c和x=-a^2/c 又及:如果中心在原點,但焦點的位置不明確在X軸或Y軸時,方程可設為mx^2+ny^2=1(m>0,n>0,m≠n)。既標準方程的統一形式。
橢圓的面積是πab。橢圓可以看作圓在某方向上的拉伸,它的引數方程是:x=acosθ , y=bsinθ 標準形式的橢圓在x0,y0點的切線就是 : xx0/a^2+yy0/b^2=1 橢圓的面積公式 S=π(圓周率)×a×b(其中a,b分別是橢圓的長半軸,短半軸的長). 或S=π(圓周率)×A×B/4(其中A,B分別是橢圓的長軸,短軸的長).
橢圓的周長公式 橢圓周長沒有公式,有積分式或無限項展開式。 橢圓周長(L)的精確計算要用到積分或無窮級數的求和。如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [橢圓近似周長], 其中a為橢圓長半軸,e為離心率 橢圓離心率的定義為橢圓上的點到某焦點的距離和該點到該焦點對應的準線的距離之比,設橢圓上點P到某焦點距離為PF,到對應準線距離為PL,則 e=PF/PL
橢圓的準線方程 x=±a^2/C 橢圓的離心率公式 e=c/a(e<1,因為2a>2c) 橢圓的焦準距 :橢圓的焦點與其相應準線(如焦點(c,0)與準線x=+a^2/C)的距離,數值=b^2/c 橢圓焦半徑公式 |PF1|=a+ex0 |PF2|=a-ex0 橢圓過右焦點的半徑r=a-ex 過左焦點的半徑r=a+ex
橢圓的通徑:過焦點的垂直於x軸(或y軸)的直線與橢圓的兩交點A,B之間的距離,數值=2b^2/a 點與橢圓位置關係 點M(x0,y0) 橢圓 x^2/a^2+y^2/b^2=1 點在圓內: x0^2/a^2+y0^2/b^2<1 點在圓上: x0^2/a^2+y0^2/b^2=1 點在圓外: x0^2/a^2+y0^2/b^2>1 直線與橢圓位置關係 y=kx+m ① x^2/a^2+y^2/b^2=1 ② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相離△<0無交點 相交△>0 可利用弦長公式:A(x1,y1) B(x2,y2) |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2
橢圓通徑(定義:圓錐曲線(除圓外)中,過焦點並垂直於軸的弦)公式:2b^2/a 橢圓的斜率公式 過橢圓上x^2/a^2+y^2/b^2=1上一點(x,y)的切線斜率為 -(b^2)X/(a^2)y 雙曲線: 數學上指一動點移動於一個平面上,與平面上兩個定點F1,F2的距離之差的絕對值始終為一定值2a(2a小於F1和F2之間的距離即2a<2c)時所成的軌跡叫做雙曲線(Hyperbola)。兩個定點F1,F2叫做雙曲線的左,右焦點(focus)。兩焦點的距離叫焦距,長度為2c。其中2a在座標軸上的端點叫做頂點,c^2=a^2+b^2 (a=長半軸,b=短半軸)