ln是對數的運算子號中一種特殊底數的記號。
一般如果有a^b=N,則把b叫作以a為底N的對數,記做b=logaN
當a=10時,簡記為lgN,稱常用對數;
當a=e(e約等於2.718…)時,簡記為lnN,稱自然對數。
擴充套件資料
在1614年開始有對數概念,約翰·納皮爾以及Jost Bürgi(英語:Jost Bürgi)在6年後,分別發表了獨立編制的對數表。
當時透過對接近1的底數的大量乘冪運算,來找到指定範圍和精度的對數和所對應的真數,當時還沒出現有理數冪的概念。1742年William Jones(英語:William Jones (mathematician))才發表了冪指數概念。
按後來人的觀點,Jost Bürgi的底數1.0001相當接近自然對數的底數e,而約翰·納皮爾的底數0.99999999相當接近1/e。
實際上不需要做開高次方這種艱難運算,約翰·納皮爾用了20年時間進行相當於數百萬次乘法的計算,Henry Briggs(英語:Henry Briggs (mathematician))建議納皮爾改用10為底數未果,他用自己的方法於1624年部份完成了常用對數表的編制。
ln是對數的運算子號中一種特殊底數的記號。
一般如果有a^b=N,則把b叫作以a為底N的對數,記做b=logaN
當a=10時,簡記為lgN,稱常用對數;
當a=e(e約等於2.718…)時,簡記為lnN,稱自然對數。
擴充套件資料
在1614年開始有對數概念,約翰·納皮爾以及Jost Bürgi(英語:Jost Bürgi)在6年後,分別發表了獨立編制的對數表。
當時透過對接近1的底數的大量乘冪運算,來找到指定範圍和精度的對數和所對應的真數,當時還沒出現有理數冪的概念。1742年William Jones(英語:William Jones (mathematician))才發表了冪指數概念。
按後來人的觀點,Jost Bürgi的底數1.0001相當接近自然對數的底數e,而約翰·納皮爾的底數0.99999999相當接近1/e。
實際上不需要做開高次方這種艱難運算,約翰·納皮爾用了20年時間進行相當於數百萬次乘法的計算,Henry Briggs(英語:Henry Briggs (mathematician))建議納皮爾改用10為底數未果,他用自己的方法於1624年部份完成了常用對數表的編制。