硬質合金是以高硬度難熔金屬的碳化物(WC、TiC)微米級粉末為主要成分,以鈷(Co)或鎳(Ni)、鉬(Mo)為粘結劑,在真空爐或氫氣還原爐中燒結而成的粉末冶金製品。ⅣB、ⅤB、ⅥB族金屬的碳化物、氮化物、硼化物等,由於硬度和熔點特別高,統稱為硬質合金。下面以碳化物為重點來說明硬質含金的結構、特徵和應用。ⅣB、ⅤB、ⅥB族金屬與碳形成的金屬型碳化物中,由於碳原子半徑小,能填充於金屬晶格的空隙中並保留金屬原有的晶格形式,形成間隙固溶體。在適當條件下,這類固溶體還能繼續溶解它的組成元素,直到達到飽和為止。因此,它們的組成可以在一定範圍內變動(例如碳化鈦的組成就在TiC0.5~TiC之間變動),化學式不符合化合價規則。當溶解的碳含量超過某個極限時(例如碳化鈦中Ti︰C=1︰1),晶格型式將發生變化,使原金屬晶格轉變成另一種形式的金屬晶格,這時的間充固溶體叫做間充化合物。金屬型碳化物,尤其是ⅣB、ⅤB、ⅥB族金屬碳化物的熔點都在3273K以上,其中碳化鉿、碳化鉭分別為4160K和4150K,是當前所知道的物質中熔點最高的。大多數碳化物的硬度很大,它們的顯微硬度大於1800kg·mm2(顯微硬度是硬度表示方法之一,多用於硬質合金和硬質化合物,顯微硬度1800kg·mm2相當於莫氏一金剛石一硬度9)。許多碳化物高溫下不易分解,抗氧化能力比其組分金屬強。碳化鈦在所有碳化物中熱穩定性最好,是一種非常重要的金屬型碳化物。然而,在氧化氣氛中,所有碳化物高溫下都容易被氧化,可以說這是碳化物的一大弱點。除碳原子外,氮原子、硼原子也能進入金屬晶格的空隙中,形成間隙固溶體。它們與間隙型碳化物的性質相似,能導電、導熱、熔點高、硬度大,同時脆性也大。硬質合金的基體由兩部分組成:一部分是硬化相;另一部分是粘結金屬。硬化相是元素週期表中過渡金屬的碳化物,如碳化鎢、碳化鈦、碳化鉭,它們的硬度很高,熔點都在2000℃以上,有的甚至超過4000℃。另外,過渡金屬的氮化物、硼化物、矽化物也有類似的特性,也可以充當硬質合金中的硬化相。硬化相的存在決定了合金具有極高硬度和耐磨性。硬質合金對碳化鎢WC粒度的要求根據不同用途的硬質合金採用不同粒度的WC(碳化鎢)。硬質合金切削刀具:比如切腳機刀片、V-CUT刀等精加工合金採用超細、亞細、細顆粒WC,粗加工合金採用中顆粒WC,重力切削和重型切削的合金採用中、粗顆粒WC做原料;礦山工具:岩石硬度高,衝擊負荷大,採用粗顆粒WC,岩石衝擊小衝擊負荷小採用中顆粒WC做原料;耐磨零件:當強調其耐磨性、抗壓和表面光潔度時,採用超細、亞細、細、中顆粒WC做原料,耐衝擊工具採用中、粗顆粒WC原料為主。WC理論含碳量為6.128%(原子50%),當WC含碳量大於理論含碳量,則WC中出現遊離碳(WC+C)。遊離碳的存在,燒結時使其周圍的WC晶粒長大,致使硬質合金晶粒不均勻。碳化鎢一般要求化合碳高(≥6.07%),遊離碳(≤0.05%),總碳則決定於硬質合金的生產工藝和使用範圍。正常情況下,石蠟工藝真空燒結用WC總碳主要決定於燒結前壓塊內的化合氧含量。含一份氧要增加0.75份碳,即WC總碳=6.13%+含氧量%×0.75(假設燒結爐內為中性氣氛,實際上多數真空爐為滲碳氣氛,所用WC總碳小於計算值)。目前中國WC的總碳含量大致分為三種:石蠟工藝真空燒結用WC的總碳約為6.18±0.03%(遊離碳將增大)。石蠟工藝氫氣燒結用WC的總碳含量為6.13±0.03%。橡膠工藝氫氣燒結用WC總碳=5.90±0.03%。上述工藝有時交叉進行,因此確定WC總碳要根據具體情況。不同使用範圍、不同Co(鈷)含量、不同晶粒度的合金所用WC總碳可做一些小的調整。低鈷合金可選用總碳偏高的碳化鎢,高鈷合金則可選用總碳偏低的碳化鎢。總之,硬質合金的具體使用需求不同對碳化鎢粒度的要求也不同。粘結金屬一般是鐵族金屬,常用的是鈷和鎳。製造硬質合金時,選用的原料粉末粒度在1~2微米之間,且純度很高。原料按規定組成比例進行配料,加進酒精或其他介質在溼式球磨機中溼磨,使它們充分混合、粉碎,經乾燥、過篩後加入蠟或膠等一類的成型劑,再經過乾燥、過篩製得混合料。然後,把混合料制粒、壓型,加熱到接近粘結金屬熔點(1300~1500℃)的時候,硬化相與粘結金屬便形成共晶合金。經過冷卻,硬化相分佈在粘結金屬組成的網格里,彼此緊密地聯絡在一起,形成一個牢固的整體。硬質合金的硬度取決於硬化相含量和晶粒粒度,即硬化相含量越高、晶粒越細,則硬度也越大。硬質合金的韌性由粘結金屬決定,粘結金屬含量越高,抗彎強度越大。
硬質合金是以高硬度難熔金屬的碳化物(WC、TiC)微米級粉末為主要成分,以鈷(Co)或鎳(Ni)、鉬(Mo)為粘結劑,在真空爐或氫氣還原爐中燒結而成的粉末冶金製品。ⅣB、ⅤB、ⅥB族金屬的碳化物、氮化物、硼化物等,由於硬度和熔點特別高,統稱為硬質合金。下面以碳化物為重點來說明硬質含金的結構、特徵和應用。ⅣB、ⅤB、ⅥB族金屬與碳形成的金屬型碳化物中,由於碳原子半徑小,能填充於金屬晶格的空隙中並保留金屬原有的晶格形式,形成間隙固溶體。在適當條件下,這類固溶體還能繼續溶解它的組成元素,直到達到飽和為止。因此,它們的組成可以在一定範圍內變動(例如碳化鈦的組成就在TiC0.5~TiC之間變動),化學式不符合化合價規則。當溶解的碳含量超過某個極限時(例如碳化鈦中Ti︰C=1︰1),晶格型式將發生變化,使原金屬晶格轉變成另一種形式的金屬晶格,這時的間充固溶體叫做間充化合物。金屬型碳化物,尤其是ⅣB、ⅤB、ⅥB族金屬碳化物的熔點都在3273K以上,其中碳化鉿、碳化鉭分別為4160K和4150K,是當前所知道的物質中熔點最高的。大多數碳化物的硬度很大,它們的顯微硬度大於1800kg·mm2(顯微硬度是硬度表示方法之一,多用於硬質合金和硬質化合物,顯微硬度1800kg·mm2相當於莫氏一金剛石一硬度9)。許多碳化物高溫下不易分解,抗氧化能力比其組分金屬強。碳化鈦在所有碳化物中熱穩定性最好,是一種非常重要的金屬型碳化物。然而,在氧化氣氛中,所有碳化物高溫下都容易被氧化,可以說這是碳化物的一大弱點。除碳原子外,氮原子、硼原子也能進入金屬晶格的空隙中,形成間隙固溶體。它們與間隙型碳化物的性質相似,能導電、導熱、熔點高、硬度大,同時脆性也大。硬質合金的基體由兩部分組成:一部分是硬化相;另一部分是粘結金屬。硬化相是元素週期表中過渡金屬的碳化物,如碳化鎢、碳化鈦、碳化鉭,它們的硬度很高,熔點都在2000℃以上,有的甚至超過4000℃。另外,過渡金屬的氮化物、硼化物、矽化物也有類似的特性,也可以充當硬質合金中的硬化相。硬化相的存在決定了合金具有極高硬度和耐磨性。硬質合金對碳化鎢WC粒度的要求根據不同用途的硬質合金採用不同粒度的WC(碳化鎢)。硬質合金切削刀具:比如切腳機刀片、V-CUT刀等精加工合金採用超細、亞細、細顆粒WC,粗加工合金採用中顆粒WC,重力切削和重型切削的合金採用中、粗顆粒WC做原料;礦山工具:岩石硬度高,衝擊負荷大,採用粗顆粒WC,岩石衝擊小衝擊負荷小採用中顆粒WC做原料;耐磨零件:當強調其耐磨性、抗壓和表面光潔度時,採用超細、亞細、細、中顆粒WC做原料,耐衝擊工具採用中、粗顆粒WC原料為主。WC理論含碳量為6.128%(原子50%),當WC含碳量大於理論含碳量,則WC中出現遊離碳(WC+C)。遊離碳的存在,燒結時使其周圍的WC晶粒長大,致使硬質合金晶粒不均勻。碳化鎢一般要求化合碳高(≥6.07%),遊離碳(≤0.05%),總碳則決定於硬質合金的生產工藝和使用範圍。正常情況下,石蠟工藝真空燒結用WC總碳主要決定於燒結前壓塊內的化合氧含量。含一份氧要增加0.75份碳,即WC總碳=6.13%+含氧量%×0.75(假設燒結爐內為中性氣氛,實際上多數真空爐為滲碳氣氛,所用WC總碳小於計算值)。目前中國WC的總碳含量大致分為三種:石蠟工藝真空燒結用WC的總碳約為6.18±0.03%(遊離碳將增大)。石蠟工藝氫氣燒結用WC的總碳含量為6.13±0.03%。橡膠工藝氫氣燒結用WC總碳=5.90±0.03%。上述工藝有時交叉進行,因此確定WC總碳要根據具體情況。不同使用範圍、不同Co(鈷)含量、不同晶粒度的合金所用WC總碳可做一些小的調整。低鈷合金可選用總碳偏高的碳化鎢,高鈷合金則可選用總碳偏低的碳化鎢。總之,硬質合金的具體使用需求不同對碳化鎢粒度的要求也不同。粘結金屬一般是鐵族金屬,常用的是鈷和鎳。製造硬質合金時,選用的原料粉末粒度在1~2微米之間,且純度很高。原料按規定組成比例進行配料,加進酒精或其他介質在溼式球磨機中溼磨,使它們充分混合、粉碎,經乾燥、過篩後加入蠟或膠等一類的成型劑,再經過乾燥、過篩製得混合料。然後,把混合料制粒、壓型,加熱到接近粘結金屬熔點(1300~1500℃)的時候,硬化相與粘結金屬便形成共晶合金。經過冷卻,硬化相分佈在粘結金屬組成的網格里,彼此緊密地聯絡在一起,形成一個牢固的整體。硬質合金的硬度取決於硬化相含量和晶粒粒度,即硬化相含量越高、晶粒越細,則硬度也越大。硬質合金的韌性由粘結金屬決定,粘結金屬含量越高,抗彎強度越大。