等邊三角形
⑴等邊三角形是銳角三角形,等邊三角形的內角都相等,且均為60°。
⑵等邊三角形每條邊上的中線、高線和所對角的平分線互相重合(三線合一)
⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線 或對角的平分線所在的直線。
⑷等邊三角形的重要資料
角和邊的數量 3
內角的大小 60°
⑸等邊三角形重心、內心、外心、垂心重合於一點,稱為等邊三角形的中心。(四心合一)
⑹等邊三角形內任意一點到三邊的距離之和為定值(等於其高)
三角形的垂心
銳角三角形垂心在三角形內部。
直角三角形垂心在三角形直角頂點。
鈍角三角形垂心在三角形外部。
垂心是從三角形的各個頂點向其對邊所作的三條垂線的交點。
三角形三個頂點,三個垂足,垂心這7個點可以得到6組四點共圓。
三角形上作三高,三高必於垂心交。
高線分割三角形,出現直角三對整,
直角三角有十二,構成九對相似形,
四點共圓圖中有,細心分析可找清,
三角形垂心的性質
設△ABC的三條高為AD、BE、CF,其中D、E、F為垂足,垂心為H,角A、B、
C的對邊分別為a、b、c,p=(a+b+c)/2.
1、銳角三角形的垂心在三角形內;直角三角形的垂心在直角頂點上;鈍角三角形的垂心在三角形外.
2、三角形的垂心是它垂足三角形的內心;或者說,三角形的內心是它旁心三角形的垂心;
3、 垂心H關於三邊的對稱點,均在△ABC的外接圓上。
4、 △ABC中,有六組四點共圓,有三組(每組四個)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四點中任一點是其餘三點為頂點的三角形的垂心(並稱這樣的四點為一—垂心組)。
6、 △ABC,△ABH,△BCH,△ACH的外接圓是等圓。
7、 在非直角三角形中,過H的直線交AB、AC所在直線分別於P、Q,則 AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
8、 設O,H分別為△ABC的外心和垂心,則∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
9、 銳角三角形的垂心到三頂點的距離之和等於其內切圓與外接圓半徑之和的2倍。
10、 銳角三角形的垂心是垂足三角形的內心;銳角三角形的內接三角形(頂點在原三角形的邊上)中,以垂足三角形的周長最短
11、從一點向三角形的三邊所引垂線的垂足共線的充要條件是該點落在三角形的外接圓上。
12、 設銳角△ABC內有一點P,那麼P是垂心的充分必要條件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
13、設H為非直角三角形的垂心,且D、E、F分別為H在BC,CA,AB上的射影,H1,H2,H3分別為△AEF,△BDF,△CDE的垂心,則△DEF≌△H1H2H3。
14、三角形垂心H的垂足三角形的三邊,分別平行於原三角形外接圓在各頂點的切線。
等邊三角形
⑴等邊三角形是銳角三角形,等邊三角形的內角都相等,且均為60°。
⑵等邊三角形每條邊上的中線、高線和所對角的平分線互相重合(三線合一)
⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線 或對角的平分線所在的直線。
⑷等邊三角形的重要資料
角和邊的數量 3
內角的大小 60°
⑸等邊三角形重心、內心、外心、垂心重合於一點,稱為等邊三角形的中心。(四心合一)
⑹等邊三角形內任意一點到三邊的距離之和為定值(等於其高)
三角形的垂心
銳角三角形垂心在三角形內部。
直角三角形垂心在三角形直角頂點。
鈍角三角形垂心在三角形外部。
垂心是從三角形的各個頂點向其對邊所作的三條垂線的交點。
三角形三個頂點,三個垂足,垂心這7個點可以得到6組四點共圓。
三角形上作三高,三高必於垂心交。
高線分割三角形,出現直角三對整,
直角三角有十二,構成九對相似形,
四點共圓圖中有,細心分析可找清,
三角形垂心的性質
設△ABC的三條高為AD、BE、CF,其中D、E、F為垂足,垂心為H,角A、B、
C的對邊分別為a、b、c,p=(a+b+c)/2.
1、銳角三角形的垂心在三角形內;直角三角形的垂心在直角頂點上;鈍角三角形的垂心在三角形外.
2、三角形的垂心是它垂足三角形的內心;或者說,三角形的內心是它旁心三角形的垂心;
3、 垂心H關於三邊的對稱點,均在△ABC的外接圓上。
4、 △ABC中,有六組四點共圓,有三組(每組四個)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四點中任一點是其餘三點為頂點的三角形的垂心(並稱這樣的四點為一—垂心組)。
6、 △ABC,△ABH,△BCH,△ACH的外接圓是等圓。
7、 在非直角三角形中,過H的直線交AB、AC所在直線分別於P、Q,則 AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
8、 設O,H分別為△ABC的外心和垂心,則∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
9、 銳角三角形的垂心到三頂點的距離之和等於其內切圓與外接圓半徑之和的2倍。
10、 銳角三角形的垂心是垂足三角形的內心;銳角三角形的內接三角形(頂點在原三角形的邊上)中,以垂足三角形的周長最短
11、從一點向三角形的三邊所引垂線的垂足共線的充要條件是該點落在三角形的外接圓上。
12、 設銳角△ABC內有一點P,那麼P是垂心的充分必要條件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
13、設H為非直角三角形的垂心,且D、E、F分別為H在BC,CA,AB上的射影,H1,H2,H3分別為△AEF,△BDF,△CDE的垂心,則△DEF≌△H1H2H3。
14、三角形垂心H的垂足三角形的三邊,分別平行於原三角形外接圓在各頂點的切線。