回覆列表
  • 1 # TD905

    第 1章 從數學建模到人工智慧

    1.1 數學建模1.1.1 數學建模與人工智慧1.1.2 數學建模中的常見問題1.2 人工智慧下的數學1.2.1 統計量1.2.2 矩陣概念及運算1.2.3 機率論與數理統計1.2.4 高等數學——導數、微分、不定積分、定積分第2章 Python快速入門2.1 安裝Python2.1.1 Python安裝步驟2.1.2 IDE的選擇2.2 Python基本操作2.2.1 第 一個小程式2.2.2 註釋與格式化輸出2.2.3 列表、元組、字典2.2.4 條件語句與迴圈語句2.2.5 break、continue、pass2.3 Python高階操作2.3.1 lambda2.3.2 map2.3.3 filter第3章 Python科學計算庫NumPy3.1 NumPy簡介與安裝3.1.1 NumPy簡介3.1.2 NumPy安裝3.2 基本操作3.2.1 初識NumPy3.2.2 NumPy陣列型別3.2.3 NumPy建立陣列3.2.4 索引與切片3.2.5 矩陣合併與分割3.2.6 矩陣運算與線性代數3.2.7 NumPy的廣播機制3.2.8 NumPy統計函式3.2.9 NumPy排序、搜尋3.2.10 NumPy資料的儲存第4章 常用科學計算模組快速入門4.1 Pandas科學計算庫4.1.1 初識Pandas4.1.2 Pandas基本操作4.2 Matplotlib視覺化相簿4.2.1 初識Matplotlib4.2.2 Matplotlib基本操作4.2.3 Matplotlib繪圖案例4.3 SciPy科學計算庫4.3.1 初識SciPy4.3.2 SciPy基本操作4.3.3 SciPy影象處理案例第5章 Python網路爬蟲5.1 爬蟲基礎5.1.1 初識爬蟲5.1.2 網路爬蟲的演算法5.2 爬蟲入門實戰5.2.1 呼叫API5.2.2 爬蟲實戰5.3 爬蟲進階—高效率爬蟲5.3.1 多程序5.3.2 多執行緒5.3.3 協程5.3.4 小結第6章 Python資料儲存6.1 關係型資料庫MySQL6.1.1 初識MySQL6.1.2 Python操作MySQL6.2 NoSQL之MongoDB6.2.1 初識NoSQL6.2.2 Python操作MongoDB6.3 本章小結6.3.1 資料庫基本理論6.3.2 資料庫結合6.3.3 結束語第7章 Python資料分析7.1 資料獲取7.1.1 從鍵盤獲取資料7.1.2 檔案的讀取與寫入7.1.3 Pandas讀寫操作7.2 資料分析案例7.2.1 普查資料統計分析案例7.2.2 小結第8章 自然語言處理8.1 Jieba分詞基礎8.1.1 Jieba中文分詞8.1.2 Jieba分詞的3種模式8.1.3 標註詞性與新增定義詞8.2 關鍵詞提取8.2.1 TF-IDF關鍵詞提取8.2.2 TextRank關鍵詞提取8.3 word2vec介紹8.3.1 word2vec基礎原理簡介8.3.2 word2vec訓練模型8.3.3 基於gensim的word2vec實戰第9章 從迴歸分析到演算法基礎9.1 迴歸分析簡介9.1.1 “迴歸”一詞的來源9.1.2 迴歸與相關9.1.3 迴歸模型的劃分與應用9.2 線性迴歸分析實戰9.2.1 線性迴歸的建立與求解9.2.2 Python求解迴歸模型案例9.2.3 檢驗、預測與控制第10章 從K-Means聚類看演算法調參10.1 K-Means基本概述10.1.1 K-Means簡介10.1.2 目標函式10.1.3 演算法流程10.1.4 演算法優缺點分析10.2 K-Means實戰第11章 從決策樹看演算法升級11.1 決策樹基本簡介11.2 經典演算法介紹11.2.1 資訊熵11.2.2 資訊增益11.2.3 資訊增益率11.2.4 基尼係數11.2.5 小結11.3 決策樹實戰11.3.1 決策樹迴歸11.3.2 決策樹的分類第12章 從樸素貝葉斯看演算法多變 19312.1 樸素貝葉斯簡介12.1.1 認識樸素貝葉斯12.1.2 樸素貝葉斯分類的工作過程12.1.3 樸素貝葉斯演算法的優缺點12.2 3種樸素貝葉斯實戰第13章 從推薦系統看演算法場景13.1 推薦系統簡介13.1.1 推薦系統的發展13.1.2 協同過濾13.2 基於文字的推薦13.2.1 標籤與知識圖譜推薦案例13.2.2 小結第14章 從TensorFlow開啟深度學習之旅14.1 初識TensorFlow14.1.1 什麼是TensorFlow14.1.2 安裝TensorFlow14.1.3 TensorFlow基本概念與原理14.2 TensorFlow資料結構14.2.1 階14.2.2 形狀14.2.3 資料型別14.3 生成資料十二法14.3.1 生成Tensor14.3.2 生成序列14.3.3 生成隨機數14.4 TensorFlow實戰

    希望對你有幫助!!!

  • 2 # 韓劇小夜場

    首先你這個python工程師範圍太大,是後端開發工程師還是資料分析工程或者人工智慧方面的工程師,建議你給自己先定位清楚,樓上幾個回答都是關於資料分析方面的,或者也可能是打廣告的。紮實的基礎語法肯定是所有python工程師合格的基礎,不要覺得敲完了python基礎語法就覺得自己基礎語法合格了,這個還需要深挖,比如說閉包,迭代器,生成器,上下文管理以及他們的協議,得十分清楚。當然更高階的還有元類了,動態繫結類方法以及屬性了,垃圾回收這些知識。就後端開發工程師來講,django,flask,tornado這三個框架熟悉其中之一,那是基本的,有可能就全部熟悉,並研究過他們的原始碼。資料庫方面,你需要了解一個關係資料庫和一個非關係資料庫,建議是mysql和redis當然postgresql以及mongdb

    也可以。然後就是訊息對列了,celery,MQ等等。如果更深入則需要研究分散式架構方面的。總而言之,紮實的基礎語法+框架+關係資料庫+非關係資料+非同步訊息對列就可以稱之為一個合格的後端開發工程師。

  • 中秋節和大豐收的關聯?
  • 南牆根種什麼蔬菜好?