一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
把函式在某個區間上的圖象[a,b]分成n份,用平行於y軸的直線把其分割成無數個矩形,再求當n→+∞時所有這些矩形面積的和。
設函式y=f(x) 在區間[a,b]上可積,對任意x∈[a,b],y=f(x)在[a,x] 上可積,且它的值與x構成一種對應關係,稱Φ(x)為變上限的定積分函式。
積分變限函式是一類重要的函式,它最著名的應用是在牛頓一萊布尼茲公式的證明中.事實上,積分變限函式是產生新函式的重要工具,尤其是它能表示非初等函式,同時能將積分學問題轉化為微分學問題。積分變限函式除了能拓展我們對函式概念的理解外,在許多場合都有重要的應用。
擴充套件資料
求極限基本方法有:
1.直接代入法
對於初等函式f(x)的極限f(x),若f(x)在x點處的函式值f(x)存在,則f(x)=f(x)。直接代入法的本質就是隻要將x=x代入函式表示式,若有意義,其極限就是該函式值。
2.無窮大與無窮小的轉換法
在相同的變化過程中,若變數不取零值,則變數為無窮大量?圳它的倒數為無窮小量。對於某些特殊極限可運用無窮大與無窮小的互為倒數關係解決。
(1)當分母的極限是“0”,而分子的極限不是“0”時,不能直接用極限的商的運演算法則,而應利用無窮大與無窮小的互為倒數的關係,先求其的極限,從而得出f(x)的極限。
(2)當分母的極限為∞,分子是常量時,則f(x)極限為0。
3.除以適當無窮大法
對於極限是“”型,不能直接用極限的商的運演算法則,必須先將分母和分子同時除以一個適當的無窮大量x。
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
把函式在某個區間上的圖象[a,b]分成n份,用平行於y軸的直線把其分割成無數個矩形,再求當n→+∞時所有這些矩形面積的和。
設函式y=f(x) 在區間[a,b]上可積,對任意x∈[a,b],y=f(x)在[a,x] 上可積,且它的值與x構成一種對應關係,稱Φ(x)為變上限的定積分函式。
積分變限函式是一類重要的函式,它最著名的應用是在牛頓一萊布尼茲公式的證明中.事實上,積分變限函式是產生新函式的重要工具,尤其是它能表示非初等函式,同時能將積分學問題轉化為微分學問題。積分變限函式除了能拓展我們對函式概念的理解外,在許多場合都有重要的應用。
擴充套件資料
求極限基本方法有:
1.直接代入法
對於初等函式f(x)的極限f(x),若f(x)在x點處的函式值f(x)存在,則f(x)=f(x)。直接代入法的本質就是隻要將x=x代入函式表示式,若有意義,其極限就是該函式值。
2.無窮大與無窮小的轉換法
在相同的變化過程中,若變數不取零值,則變數為無窮大量?圳它的倒數為無窮小量。對於某些特殊極限可運用無窮大與無窮小的互為倒數關係解決。
(1)當分母的極限是“0”,而分子的極限不是“0”時,不能直接用極限的商的運演算法則,而應利用無窮大與無窮小的互為倒數的關係,先求其的極限,從而得出f(x)的極限。
(2)當分母的極限為∞,分子是常量時,則f(x)極限為0。
3.除以適當無窮大法
對於極限是“”型,不能直接用極限的商的運演算法則,必須先將分母和分子同時除以一個適當的無窮大量x。