各種截面的慣性矩的計算公式如下:
截面慣性矩
截面慣性矩(I=截面面積X截面軸向長度的二次方)
截面慣性矩:the area moment of inertia
characterized an object"s ability to resist bending and is required to calculate displacement.
截面各微元面積與各微元至截面某一指定軸線距離二次方乘積的積分Ix= y^2dF.
截面極慣性矩
截面極慣性矩(Ip=面積X垂直軸二次)。
扭轉慣性矩Ip: the torsional moment of inertia
極慣性矩:the polar moment of inertia
截面各微元面積與各微元至某一指定截面距離二次方乘積的積分Iρ= ρ^2dF。
a quantity to predict an object"s ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
靜矩(面積X面內軸一次)
把微元面積與各微元至截面上指定軸線距離乘積的積分稱為截面的對指定軸的靜矩Sx=∫ydA。
靜矩就是面積矩,是構件的一個重要的截面特性,是截面或截面上某一部分的面積乘以此面積的形心到整個截面的型心軸之間的距離得來的,是用來計算應力的。
注意:
慣性矩是乘以距離的二次方,靜矩是乘以距離的一次方,慣性矩和麵積矩(靜矩)是有區別的。
擴充套件資料:
1、截面慣性矩指截面各微元面積與各微元至截面上某一指定軸線距離二次方乘積的積分。截面慣性矩是衡量截面抗彎能力的一個幾何引數。任意截面圖形內取微面積dA與其搭配z軸的距離y的平方的乘積y²dA定義為微面積對z軸的慣性矩,在整個圖形範圍內的積分則稱為此截面對z軸的慣性矩Iz。
2、截面係數是用於描述零件截面形狀對零件受力,受彎矩,受扭矩等影響的物理量。其是機械零件和構件的一種截面幾何參量,舊稱截面模量。它用以計算零件、構件的抗彎強度和抗扭強度,或者用以計算在給定的彎矩或扭矩條件下截面上的最大應力,在力學計算中有著很大的作用。一般截面係數的符號為W,單位為毫米的三次方,截面的抗彎和抗扭強度與相應的截面係數成正比。
各種截面的慣性矩的計算公式如下:
截面慣性矩
截面慣性矩(I=截面面積X截面軸向長度的二次方)
截面慣性矩:the area moment of inertia
characterized an object"s ability to resist bending and is required to calculate displacement.
截面各微元面積與各微元至截面某一指定軸線距離二次方乘積的積分Ix= y^2dF.
截面極慣性矩
截面極慣性矩(Ip=面積X垂直軸二次)。
扭轉慣性矩Ip: the torsional moment of inertia
極慣性矩:the polar moment of inertia
截面各微元面積與各微元至某一指定截面距離二次方乘積的積分Iρ= ρ^2dF。
a quantity to predict an object"s ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
靜矩(面積X面內軸一次)
把微元面積與各微元至截面上指定軸線距離乘積的積分稱為截面的對指定軸的靜矩Sx=∫ydA。
靜矩就是面積矩,是構件的一個重要的截面特性,是截面或截面上某一部分的面積乘以此面積的形心到整個截面的型心軸之間的距離得來的,是用來計算應力的。
注意:
慣性矩是乘以距離的二次方,靜矩是乘以距離的一次方,慣性矩和麵積矩(靜矩)是有區別的。
擴充套件資料:
1、截面慣性矩指截面各微元面積與各微元至截面上某一指定軸線距離二次方乘積的積分。截面慣性矩是衡量截面抗彎能力的一個幾何引數。任意截面圖形內取微面積dA與其搭配z軸的距離y的平方的乘積y²dA定義為微面積對z軸的慣性矩,在整個圖形範圍內的積分則稱為此截面對z軸的慣性矩Iz。
2、截面係數是用於描述零件截面形狀對零件受力,受彎矩,受扭矩等影響的物理量。其是機械零件和構件的一種截面幾何參量,舊稱截面模量。它用以計算零件、構件的抗彎強度和抗扭強度,或者用以計算在給定的彎矩或扭矩條件下截面上的最大應力,在力學計算中有著很大的作用。一般截面係數的符號為W,單位為毫米的三次方,截面的抗彎和抗扭強度與相應的截面係數成正比。