對數是中學初等數學中的重要內容,那麼當初是誰首創“對數”這種高階運算的呢?在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家——納皮爾(Napier,1550-1617年)男爵.在納皮爾所處的年代,哥白尼的“太陽中心說”剛剛開始流行,這導致天文學成為當時的熱門學科.可是由於當時常量數學的侷限性,天文學家們不得不花費很大的精力去計算那些繁雜的“天文數字”,因此浪費了若干年甚至畢生的寶貴時間.納皮爾也是當時的一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終於獨立發明了對數.當然,納皮爾所發明的對數,在形式上與現代數學中的對數理論並不完全一樣.在納皮爾那個時代,“指數”這個概念還尚未形成,因此納皮爾並不是像現行代數課本中那樣,透過指數來引出對數,而是透過研究直線運動得出對數概念的.那麼,當時納皮爾所發明的對數運算,是怎麼一回事呢?在那個時代,計算多位數之間的乘積,還是十分複雜的運算,因此納皮爾首先發明瞭一種計算特殊多位數之間乘積的方法.讓我們來看看下面這個例子: n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、…… 2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 這兩行數字之間的關係是極為明確的:第一行表示2的指數,第二行表示2的對應冪.如果我們要計算第二行
對數是中學初等數學中的重要內容,那麼當初是誰首創“對數”這種高階運算的呢?在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家——納皮爾(Napier,1550-1617年)男爵.在納皮爾所處的年代,哥白尼的“太陽中心說”剛剛開始流行,這導致天文學成為當時的熱門學科.可是由於當時常量數學的侷限性,天文學家們不得不花費很大的精力去計算那些繁雜的“天文數字”,因此浪費了若干年甚至畢生的寶貴時間.納皮爾也是當時的一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終於獨立發明了對數.當然,納皮爾所發明的對數,在形式上與現代數學中的對數理論並不完全一樣.在納皮爾那個時代,“指數”這個概念還尚未形成,因此納皮爾並不是像現行代數課本中那樣,透過指數來引出對數,而是透過研究直線運動得出對數概念的.那麼,當時納皮爾所發明的對數運算,是怎麼一回事呢?在那個時代,計算多位數之間的乘積,還是十分複雜的運算,因此納皮爾首先發明瞭一種計算特殊多位數之間乘積的方法.讓我們來看看下面這個例子: n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、…… 2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 這兩行數字之間的關係是極為明確的:第一行表示2的指數,第二行表示2的對應冪.如果我們要計算第二行