祖沖之(公元429-500年)是中國南北朝時期,河北省淶源縣人。他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為中國古代傑出的數學家、天文學家。求算圓周率的值是數學中一個非常重要也是非常困難的研究課題。中國古代許多數學家都致力於圓周率的計算,而公元5世紀祖沖之所取得的成就可以說是圓周率計算的一個躍進。秦漢以前,人們以"徑一週三"做為圓周率,這就是"古率"。後來發現古率誤差太大,圓周率應是"圓徑一而週三有餘",不過究竟餘多少,意見不一。直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長。劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。祖沖之在前人成就的基礎上,經過刻苦鑽研,反覆演算,求出π在3.1415926與3.1415927之間。並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。祖沖之計算得出的密率,在西方被稱為“卡瓦列利”(Cavalieri)原理,但這是在祖沖之以後一千多年才由義大利數學家卡瓦列利發現的。為了紀念祖氏父子發現這一原理的重大貢獻,數學上也稱這一原理為“祖原理”。直到現在,人類仍然在堅持研究Π,說明研究Π存在一定的意義和價值,甚至有人說Π中包涵著整個宇宙的奧秘。但是Π不能代表宇宙,Π只是一個靜態的數值,而宇宙是一個動態的、變化的時空形體,宇宙的奧秘也是無窮無盡的。
祖沖之(公元429-500年)是中國南北朝時期,河北省淶源縣人。他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為中國古代傑出的數學家、天文學家。求算圓周率的值是數學中一個非常重要也是非常困難的研究課題。中國古代許多數學家都致力於圓周率的計算,而公元5世紀祖沖之所取得的成就可以說是圓周率計算的一個躍進。秦漢以前,人們以"徑一週三"做為圓周率,這就是"古率"。後來發現古率誤差太大,圓周率應是"圓徑一而週三有餘",不過究竟餘多少,意見不一。直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長。劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。祖沖之在前人成就的基礎上,經過刻苦鑽研,反覆演算,求出π在3.1415926與3.1415927之間。並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。祖沖之計算得出的密率,在西方被稱為“卡瓦列利”(Cavalieri)原理,但這是在祖沖之以後一千多年才由義大利數學家卡瓦列利發現的。為了紀念祖氏父子發現這一原理的重大貢獻,數學上也稱這一原理為“祖原理”。直到現在,人類仍然在堅持研究Π,說明研究Π存在一定的意義和價值,甚至有人說Π中包涵著整個宇宙的奧秘。但是Π不能代表宇宙,Π只是一個靜態的數值,而宇宙是一個動態的、變化的時空形體,宇宙的奧秘也是無窮無盡的。