回覆列表
  • 1 # NickD

    自 2006 年雲計算正式在科技世界中展露頭角,近 13 年的迅猛發展,2019 年雲計算市場早已不同以往。回顧昨日,2018 年風口浪尖上的雲計算,“人人說雲,事事上雲”,各大中型企業到初創企業紛紛把不同型別的應用服務遷移到雲上,尋找上雲最佳途徑。再看今朝,AI、物聯網、5G 等新興技術的發展落地,不斷拓寬著雲計算的實踐邊界與應用空間。

    1與雲計算互補:AI 推動邊緣計算應運而生

    從雲計算對傳統 IT 架構的顛覆性變革,到 AI 構建模型與演算法的智慧世界,再到萬物互聯的 IoT 悄然崛起,雲計算以排山倒海之勢拉動著 IT 產業鏈的發展,而人工智慧和物聯網也一直都是社會普遍關注的焦點話題。

    值得注意的是,近兩年,與我們生活息息相關的智慧服務隨處可見,但其底層的 AI 技術或者說機器學習技術卻已擁有著超過 50 年的悠久歷史。要說“人工智慧”為何在近幾年才逐步走近人們的生活,這與雲計算有著密切聯絡。2006 年雲計算的誕生,預示著人工智慧拐點的到來,資料量越來越大,計算能力越來越強,過去不實用的 AI 技術到了 2006 年也都逐步進入實用階段,可以說,是雲計算讓 AI 技術更加接近企業與消費者,並不斷利用 AI 技術驅動著產業變革。

    技術發展總是相互貫通的,隨著數十億的智慧裝置在住房、工廠、醫院、汽車等地普及開來,物聯網技術的興起必然是這個時代的又一場革命。隨著物聯網在各行各業的推廣應用,我們急需一個解決方案來收集、處理、儲存這些物聯網裝置所產生的龐雜資料,而云計算平臺正是分析加工這些海量資料與連線的技術基石。同時,IoT 通常會在邊緣端對裝置進行管理和控制,很多的資料需在邊緣進行實時決策,這就對邊緣裝置的智慧化提出了更高的要求。

    2將機器學習智慧引入邊緣計算

    邊緣計算意味著把雲計算的資源、計算、儲存等能力帶到更接近使用者的本地邊緣裝置中,大量計算可以在本地直接處理,而無需把所有資料都發送到雲端,實現本地事件的更快響應。

    事實上,要想確保 IoT 應用程式能夠快速響應本地事件,則必須以非常低的延遲獲得推理結果,但這時如果把資料傳送至雲端,再等待雲端的推理決策,這個過程就很難滿足一些業務場景的需求。

    例如,在很多智慧城市的智慧攝像頭場景中,智慧攝像頭需要在邊緣側快速識別汽車牌照或者人臉等場景,如若把海量的影片資料實時上傳到雲端去做推理,這勢必會帶來大量不必要的頻寬佔用,並無法滿足其對於實時決策的需求,這時就需要一個更加智慧的解決方案來做推理。

    但是,僅使用雲計算來部署人工智慧的方式,與將雲計算與邊緣計算有效結合起來應用人工智慧的方式截然不同。資料科學家依靠雲計算來攝取和儲存大量資料集,並識別資料中的模式和關係,在建立模型的整個過程中,訓練和最佳化機器學習模型需要大量計算資源,因此與雲計算是天然良配。

    而實際上,最終的、經過最佳化的機器學習模型在推理的過程中並不需要太多的資源。所以為了確保 IoT 應用程式以非常低的延遲獲得推理結果,我們就可以把訓練放在雲端,推理放在邊緣側,以達到利用雲端去訓練機器學習模型,利用邊緣裝置實時進行推理,甚至在沒有網際網路的環境中產生資料時,也能實現高速響應業務變化並作出決策。

    例如,在智慧農業的場景中,裝在農田裡的感測器會對收集的環境資料進行實時決策。但在這些場景中,裝置通常無法保證連線到網際網路,這時就更加需要邊緣端實時作出決策,待裝置具備網際網路連線時,再同步資料到雲端。

    廣闊的市場前景,潛在的應用範圍,毋庸置疑,人工智慧讓邊緣計算更有價值。據美國市場調研公司 CB Insights 估算,到 2023 年全球邊緣計算行業,整體市場容量有望達到 340 億美元。其中包括亞馬遜、微軟、谷歌在內的幾大公有云巨頭的爭相佈局也說明了邊緣計算未來發展的無限潛力,尤其在智慧家居領域,邊緣計算如何發揮更大價值已成為行業的主要研究方向。

    3智慧家居中的邊緣智慧

    目前,智慧家居中的大部分智慧裝置主要還是透過雲計算來實現裝置互動,但裝置對雲計算的強依賴同樣會產生響應速度慢、延遲感強、網路故障等諸多問題。這時,填補目前雲計算特性不足並提升計算效率的邊緣計算,在智慧家居領域中強勢崛起。

    據麥肯錫預測,到 2025 年,全球聯網裝置總量將達 750 億。從智慧的家庭監控攝像頭,到智慧門鎖,智慧空調等,對於每天要處理大量 IoT 資料的智慧家居行業來說,邊緣計算將成為必然選擇。

    以格蘭仕的智慧家居數字化轉型為例,自 1978 年 9 月 28 日創立以來,格蘭仕歷經多次轉型,從輕紡明星企業,到微波爐“黃金品牌”,再到綜合性白色家電集團,成為中國家電產業的龍頭企業之一。然而隨著科技的發展和消費需求的變化,為了應對智慧化製造、精益化管理等一系列挑戰,格蘭仕決定開啟第四次轉型 —— 數字化轉型。

    但格蘭仕過去傳統架構設計的資訊系統已不再適用,在數字化轉型過程中,格蘭仕在對比了眾多解決方案後,最終選擇利用 AWS IoT 、AWS ECS 等 AWS 解決方案完成了電商平臺與物聯網平臺的開發部署。

    在 AWS 智慧家庭裝置的解決方案中,使用者可在 Amazon SageMaker 中構建預測模型以用於場景檢測分析,並對其進行最佳化以便在任何攝像機上的穩定執行,然後部署該模型以便預測可疑活動併發送警報,實現在雲中構建、訓練和最佳化機器學習模型,並在本地裝置進行推理的高效響應。

    AWS Greengrass ML Inference

    使用者首先可將訓練資料上傳至儲存桶中,並選擇 SageMaker 提供的現有演算法生成訓練模型,該模型以壓縮 zip 檔案的形式被複制到另一 Amazon S3 儲存桶內。接下來,該 zip 檔案會被複制到裝置中,該裝置則在執行時由 AWS Lambda 函式進行呼叫。其中,在 IoT Greengrass 上執行推理過程所收集到的資料可傳送回 SageMaker,進行就地標記,並用於不斷提高機器學習模型的質量。

    具體的智慧家庭場景中,機器學習模型需要在家中的智慧攝像頭和閘道器的邊緣裝置上直接執行,並檢測是否發生了一些需要實時處理的資料。在邊緣端,這些機器學習模型作為一個 Serverless 函式部署,該函式則由應用程式直接呼叫(圖中 2 和 6)。在每個邊緣位置,由於 FaaS 中的部署單元為一個函式,因此它比推送到虛擬機器或容器要更高效得多,而且一旦有新的機器學習模型在雲端產生時,都會為其分配一個新版本,並將其同步到邊緣端去執行(圖中 2,3 之間的互動)。總之,機器學習的繁重工作在雲中完成,邊緣計算簡化了推理與部署體驗,Serverless 也將簡化開發人員的工作負擔。

    4小結

    邊緣計算作為算力架構最佳化最重要的技術,不僅是物聯網發展的重要方向,同時也是未來 AI 技術的重要延伸。萬物互聯,將機器學習智慧引入邊緣計算,使智慧計算更接近於應用程式,人工智慧與邊緣計算的融合與突破,勢必將重新定義未來科技的發展新方向。

  • 中秋節和大豐收的關聯?
  • 為什麼正確的程式設計原始碼貼上到別處就不能執行?