光、熱、電、互轉規律
光射規律
熱從粒子角度來看,“熱”是原子核外電子吸包電能時變為光子,由於光子含有熱量和不同顏色的光亮,並且有規律的不停釋放光與熱,由於光或光線都處於空間,若不含媒介的空間光線,它會自然的從線的垂直面上,以線為中心向周圍四面八方緩慢輻射熱與光,它原本是正負光子結合的,它的每個輻射點即正負光子結合體,光線上以這些正負光子結合體為圓心,在光線上形成了平行甩光熱圓面,圓心就是光線上的正負光子結合體,光與熱在這些正負光子結合體上,向其周的四面八方均勻不停的以8次/秒的釋放著光與熱,最後光線只剩下一對一對的無力電子,自然脫落扔掉。光與熱的釋放狀態形成了以正負光子結合體為圓心的平行圓面,它們的圓心就是結合上的正負光子串。
電子核能與原子核能
對於光具有照明作用;對於熱它具有分開粒子功能。當光有規律的甩掉熱時,這些熱對於組成固態的分子具有分開作用,其規律是,先將物質分子的兩樣結合力即正負離子異性電相吸的電力破壞,也就是兩個離子上包裹的相套電力線其中的球交電力線處在離子側面,所以正負離子同向側面靠近就會異性相成分子。這個分子間的吸力用熱來分解,因為熱遇到電力線,電力線自然就會變化為熱,這是規律。透過這個規律離子與離子的其他部分電力線仍然轉化為熱,就這樣消除微粒之間的吸力使它們變為自由的微粒成為氣體的。由於任何物質都會由原子核與它的核外電子組成的,電子繞原子核轉,根據任何帶電粒子運動都會在其本身上與其運動軌跡中心處聚集核能,並且同時釋放這些核能,形成某形狀的電力線包裹在軌跡中心處,當達到飽和時自然移動出去成為自由的核能,或者仍然包裹在軌跡中心上,對別的粒子相吸成大的粒子,這就是說的是原子核上包裹的相套電力線即平行電力線和它外套的球交電力線,該電力線的產生是因為原子核外的電子運動,電子本身的形狀像一個玉米穗,由於電子本身上聚集的核能起初就是在它上面包裹著的,達到飽和時吐出成為電子聚集的核能,所以說電子周圍存在著比電子更小的帶正電微粒繞電子轉的,根據帶電粒子的運動規律,所以說電子周圍的正電微粒與它的軌跡中心處即電子聚集核能,又由於電子是玉米穗形狀,它的外圍轉的多個正電微粒軌跡是近似於橢圓,由於這些在橢圓上運動正電微粒力大小不同,形成的橢圓軌跡不同 ,以最大旋轉即橢圓面發射出的扁圓柱體的平行電力線 ,它的中心處的電子位置發射出的橢圓形球交電力線,這兩種電力線是相套的並且包裹在電子上,當達到飽和時保持原狀吐出成為自由的核能,這就是電子上聚集的核能叫電子核能。這種核能,這種核能的平行部分電力線的上下是異性電,它們自然的首尾異性相吸成串 ,這就是微小扁形橢圓體電力線構成了新的電力線,這個新電力線屬於電子繞原子核轉產生出來包裹在原子核上的,它的造型是原子核外圍電子運動軌跡是圓形的,所以它發出的電力線是圓柱平行電力線和外套的球交電力線,這些電力線的微體構造就是前面說的扁橢圓體結合的串,它從運動的電子和電子運動軌跡中心位置發射出平行電力線和它外套球交電力線,由於原子核處於運動軌跡中心,所以發出的相套電力線包裹在原子核上,這個包裹在原子核上的相套電力線不是當核能的用的,它是用來靠電力線上的吸引力連線周圍的同樣粒子成為分子的,所以說原子核上包裹的電力線相吸與相斥力就是原子之間的吸力和斥力,或者說在這相套電力線範圍內的分子與分子之間的吸引力,都是這個相套電力線的作用。就靠這些作用力形成物質體的。
熱分開粒子規律
由於原子與原子上的同向側面吸力電力線即球交電力線,遇到能克服它們之間電力線的熱,此時電力線就會轉化為熱,自然取消原子與原子的相吸力和排斥力。其實對於離子它也是原子,它形成包裹的相套電力線後,原子核最外圍的電子為了達到飽和,失去或得到電子形成離子,這樣正離子與負離子異性相力、各離子側面的球交電力線相吸力、離子與離子的上正下負平行電力線之間相吸或相斥,這三項作用力使離子形成分子 ,若這三種作用力的都用上組成的分子屬於固體;若除用正負離子的異性電吸力外,還用離子上包裹電力線的一半力結合的分子屬於液體;若只用正負離子的異性電吸力,結合的分子是氣體,這就是物質的氣體、液體、固體的結合原理。對於上下異性電的平行電力線與另一個離子上下異性電的平行電力線碰到大的熱量轉化為熱,它之間的吸力自然取消,這樣原子核上包裹的那些電力線全都轉化為熱,熱就這樣消除離子上包裹的相套電力線的;對於另一項正負離子之間的吸力,是原子核外電子失去或得到形成離子的顯出的正負電性,此時這些核外電子早已變為光子,所以這項電力作用早已消除。所以熱就這樣將物質的分子,分成原子、中子、質子、夸克粒子的,當到夸克就停下,此時夸克上包裹的扭曲平行電力線和它外套的扭曲球交電力線,這個在夸克上包裹的電力線具有將熱變為它本身的飽和程度,當它吐出成為自由的夸克核能,這樣熱透過夸克上的包裹電力線轉化為飽和電力線,吐出成自由核能,這說明熱透過夸克變為夸克核能,只有夸克上包裹的電力線才具有將熱變為電力線的力,成為飽和的夸克核能,其餘的粒子(原子、中子、質子)上包裹的電力線具有變化為熱的性質,熱在這些粒子起到消除電力線的作用,這是電力線轉化為熱的結果。
光與電的實質轉化規律
由於任何物質的層層帶電粒子,都具有包裹它相對應的某形狀電力線。由於任何帶電粒子都具有吸足它同性質電的趨勢。對於電子也不例外,當包裹著電力線的電子吸足電力時即塊飛狀態,也就達到飽和了,此時電子變為包裹透明體的光子,這是電子變光子的規律,電子上的相套電力線與光子上的包裹透明體,也是隨電子變光子進行的,也就是說粒子上包裹的相套電力線變化為光子上甩掉的熱,規律是粒子上包裹的相套電力線遇上熱,及時變化為熱。
熱分開粒子的原理
原子由於核外電子的得失形成的正負離子,即包裹原子核上面的相套電力線碰到熱就會消失。由於熱就是電子吸足夠的電變成光子,光子上包裹透明體裡的光與熱,它相當於電子上包裹的相套電力線上的電力(吸力與斥力)所以在電熱轉化規律上,正或負電子上分別包裹的相套電力線的飛力之和(最大力)全等於轉化為的該光子對釋放完的光與熱(正負電光子異性相吸成串為不顯電性的光線,其中正負兩個電子為一對即甩光點)。在物質的分子中,只要電子吸飽電力變為光子,不停的甩掉熱,此時這些熱與原子上的相套電力線相接觸,原子上的相套電力線就會變化為熱量。它的變化規律是電子變化為光子,而光子摔倒光與熱,變成廢電子。這裡的原子核上包裹的電力線接觸熱,只能電力線變化為熱量。對於電子上的飛力就是包裹的電力線,當電子變為光子時,它的電力線變為透明體包裹在光子上。這裡的電子對應的光子,電力線對應透明體。電子變光子,電力線變透明體,透明體甩掉光與熱,這就是它的變化規律,光與熱又去靠近下層靠電力線吸在一起的粒子,同樣的原理將它們分開。如熱分開原子與原子結合力,再分開質子裡的夸克與夸克結合力,都是靠熱接觸它們上面包裹的相套電力線,使電力線轉化為光與熱,所以它們在分開粒子過程中出現火紅熱的狀態,這就是燃料著火過程,少熱量的小火變為多熱量的大火原因。
光、熱、電、互轉規律
光射規律
熱從粒子角度來看,“熱”是原子核外電子吸包電能時變為光子,由於光子含有熱量和不同顏色的光亮,並且有規律的不停釋放光與熱,由於光或光線都處於空間,若不含媒介的空間光線,它會自然的從線的垂直面上,以線為中心向周圍四面八方緩慢輻射熱與光,它原本是正負光子結合的,它的每個輻射點即正負光子結合體,光線上以這些正負光子結合體為圓心,在光線上形成了平行甩光熱圓面,圓心就是光線上的正負光子結合體,光與熱在這些正負光子結合體上,向其周的四面八方均勻不停的以8次/秒的釋放著光與熱,最後光線只剩下一對一對的無力電子,自然脫落扔掉。光與熱的釋放狀態形成了以正負光子結合體為圓心的平行圓面,它們的圓心就是結合上的正負光子串。
電子核能與原子核能
對於光具有照明作用;對於熱它具有分開粒子功能。當光有規律的甩掉熱時,這些熱對於組成固態的分子具有分開作用,其規律是,先將物質分子的兩樣結合力即正負離子異性電相吸的電力破壞,也就是兩個離子上包裹的相套電力線其中的球交電力線處在離子側面,所以正負離子同向側面靠近就會異性相成分子。這個分子間的吸力用熱來分解,因為熱遇到電力線,電力線自然就會變化為熱,這是規律。透過這個規律離子與離子的其他部分電力線仍然轉化為熱,就這樣消除微粒之間的吸力使它們變為自由的微粒成為氣體的。由於任何物質都會由原子核與它的核外電子組成的,電子繞原子核轉,根據任何帶電粒子運動都會在其本身上與其運動軌跡中心處聚集核能,並且同時釋放這些核能,形成某形狀的電力線包裹在軌跡中心處,當達到飽和時自然移動出去成為自由的核能,或者仍然包裹在軌跡中心上,對別的粒子相吸成大的粒子,這就是說的是原子核上包裹的相套電力線即平行電力線和它外套的球交電力線,該電力線的產生是因為原子核外的電子運動,電子本身的形狀像一個玉米穗,由於電子本身上聚集的核能起初就是在它上面包裹著的,達到飽和時吐出成為電子聚集的核能,所以說電子周圍存在著比電子更小的帶正電微粒繞電子轉的,根據帶電粒子的運動規律,所以說電子周圍的正電微粒與它的軌跡中心處即電子聚集核能,又由於電子是玉米穗形狀,它的外圍轉的多個正電微粒軌跡是近似於橢圓,由於這些在橢圓上運動正電微粒力大小不同,形成的橢圓軌跡不同 ,以最大旋轉即橢圓面發射出的扁圓柱體的平行電力線 ,它的中心處的電子位置發射出的橢圓形球交電力線,這兩種電力線是相套的並且包裹在電子上,當達到飽和時保持原狀吐出成為自由的核能,這就是電子上聚集的核能叫電子核能。這種核能,這種核能的平行部分電力線的上下是異性電,它們自然的首尾異性相吸成串 ,這就是微小扁形橢圓體電力線構成了新的電力線,這個新電力線屬於電子繞原子核轉產生出來包裹在原子核上的,它的造型是原子核外圍電子運動軌跡是圓形的,所以它發出的電力線是圓柱平行電力線和外套的球交電力線,這些電力線的微體構造就是前面說的扁橢圓體結合的串,它從運動的電子和電子運動軌跡中心位置發射出平行電力線和它外套球交電力線,由於原子核處於運動軌跡中心,所以發出的相套電力線包裹在原子核上,這個包裹在原子核上的相套電力線不是當核能的用的,它是用來靠電力線上的吸引力連線周圍的同樣粒子成為分子的,所以說原子核上包裹的電力線相吸與相斥力就是原子之間的吸力和斥力,或者說在這相套電力線範圍內的分子與分子之間的吸引力,都是這個相套電力線的作用。就靠這些作用力形成物質體的。
熱分開粒子規律
由於原子與原子上的同向側面吸力電力線即球交電力線,遇到能克服它們之間電力線的熱,此時電力線就會轉化為熱,自然取消原子與原子的相吸力和排斥力。其實對於離子它也是原子,它形成包裹的相套電力線後,原子核最外圍的電子為了達到飽和,失去或得到電子形成離子,這樣正離子與負離子異性相力、各離子側面的球交電力線相吸力、離子與離子的上正下負平行電力線之間相吸或相斥,這三項作用力使離子形成分子 ,若這三種作用力的都用上組成的分子屬於固體;若除用正負離子的異性電吸力外,還用離子上包裹電力線的一半力結合的分子屬於液體;若只用正負離子的異性電吸力,結合的分子是氣體,這就是物質的氣體、液體、固體的結合原理。對於上下異性電的平行電力線與另一個離子上下異性電的平行電力線碰到大的熱量轉化為熱,它之間的吸力自然取消,這樣原子核上包裹的那些電力線全都轉化為熱,熱就這樣消除離子上包裹的相套電力線的;對於另一項正負離子之間的吸力,是原子核外電子失去或得到形成離子的顯出的正負電性,此時這些核外電子早已變為光子,所以這項電力作用早已消除。所以熱就這樣將物質的分子,分成原子、中子、質子、夸克粒子的,當到夸克就停下,此時夸克上包裹的扭曲平行電力線和它外套的扭曲球交電力線,這個在夸克上包裹的電力線具有將熱變為它本身的飽和程度,當它吐出成為自由的夸克核能,這樣熱透過夸克上的包裹電力線轉化為飽和電力線,吐出成自由核能,這說明熱透過夸克變為夸克核能,只有夸克上包裹的電力線才具有將熱變為電力線的力,成為飽和的夸克核能,其餘的粒子(原子、中子、質子)上包裹的電力線具有變化為熱的性質,熱在這些粒子起到消除電力線的作用,這是電力線轉化為熱的結果。
光與電的實質轉化規律
由於任何物質的層層帶電粒子,都具有包裹它相對應的某形狀電力線。由於任何帶電粒子都具有吸足它同性質電的趨勢。對於電子也不例外,當包裹著電力線的電子吸足電力時即塊飛狀態,也就達到飽和了,此時電子變為包裹透明體的光子,這是電子變光子的規律,電子上的相套電力線與光子上的包裹透明體,也是隨電子變光子進行的,也就是說粒子上包裹的相套電力線變化為光子上甩掉的熱,規律是粒子上包裹的相套電力線遇上熱,及時變化為熱。
熱分開粒子的原理
原子由於核外電子的得失形成的正負離子,即包裹原子核上面的相套電力線碰到熱就會消失。由於熱就是電子吸足夠的電變成光子,光子上包裹透明體裡的光與熱,它相當於電子上包裹的相套電力線上的電力(吸力與斥力)所以在電熱轉化規律上,正或負電子上分別包裹的相套電力線的飛力之和(最大力)全等於轉化為的該光子對釋放完的光與熱(正負電光子異性相吸成串為不顯電性的光線,其中正負兩個電子為一對即甩光點)。在物質的分子中,只要電子吸飽電力變為光子,不停的甩掉熱,此時這些熱與原子上的相套電力線相接觸,原子上的相套電力線就會變化為熱量。它的變化規律是電子變化為光子,而光子摔倒光與熱,變成廢電子。這裡的原子核上包裹的電力線接觸熱,只能電力線變化為熱量。對於電子上的飛力就是包裹的電力線,當電子變為光子時,它的電力線變為透明體包裹在光子上。這裡的電子對應的光子,電力線對應透明體。電子變光子,電力線變透明體,透明體甩掉光與熱,這就是它的變化規律,光與熱又去靠近下層靠電力線吸在一起的粒子,同樣的原理將它們分開。如熱分開原子與原子結合力,再分開質子裡的夸克與夸克結合力,都是靠熱接觸它們上面包裹的相套電力線,使電力線轉化為光與熱,所以它們在分開粒子過程中出現火紅熱的狀態,這就是燃料著火過程,少熱量的小火變為多熱量的大火原因。