回覆列表
  • 1 # 為自己拼個未來

    圓周率π是無理數。證明如下:假設π是有理數,則π=a/b,(a,b為自然數)令f(x)=(x^n)[(a-bx)^n]/(n!)若0<x<a/b,則0<f(x)<(π^n)(a^n)/(n!)0<sinx<1以上兩式相乘得:0<f(x)sinx<(π^n)(a^n)/(n!)當n充分大時,,在[0,π]區間上的積分有0<∫f(x)sinxdx <[π^(n+1)](a^n)/(n!)<1 …………(1)又令:F(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶數階導數)由於n!f(x)是x的整係數多項式,且各項的次數都不小於n,故f(x)及其各階導數在x=0點處的值也都是整數,因此,F(x)和F(π)也都是整數。又因為d[F"(x)sinx-F(x)conx]/dx=F"(x)sinx+F"(x)cosx-F"(x)cosx+F(x)sinx=F"(x)sinx+F(x)sinx=f(x)sinx所以有:∫f(x)sinxdx=[F"(x)sinx-F(x)cosx],(此處上限為π,下限為0)=F(π)+F(0) 上式表示∫f(x)sinxdx在[0,π]區間上的積分為整數,這與(1)式矛盾。所以π不是有理數,又它是實數,故π是無理數。

  • 中秋節和大豐收的關聯?
  • 南朝壽命最大,在位時間最長的皇帝是誰?最後結局是怎麼樣的?