二元線性方程組
"5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。 2x+3y=4
目錄
詞條目錄
二元線性方程組簡介
定義
性質
方程組
概念
應用
消元法
消元方法
例子
其他方法
換元法
整體代入
關閉
二元線性方程組實質上就是二元一次方程組。因為二元一次方程的圖象是一條直線,所以有時就將二元一次方程稱之為線性方程,將二元一次方程組稱之為線性方程組。
線性方程組的一般形式為:
A1x+B1y+C1=0
A2x+B2y+C2=0.
(1)二元一次方程組:由兩個二元一次方程所組成的一組方程,叫做二元一次方程組.
(2)二元一次方程組的解:二元一次方程組中兩個方程的公共解,叫做二元一次方程組的解.
對二元一次方程組的理解應注意:
①方程組各方程中,相同的字母必須代表同一數量,否則不能將兩個方程合在一起.
②怎樣檢驗一組數值是不是某個二元一次方程組的解,常用的方法如下:將這組數值分別代入方程組中的每個方程,只有當這組數值滿足其中的所有方程時,才能說這組數值是此方程組的解,否則,如果這組數值不滿足其中任一個方程,那麼它就不是此方程組的解.
方程兩邊都是整式,含有兩個未知數,並且含有未知數的項的次數都是1的方程,叫做二元一次方程.
你能區分這些方程嗎?5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。
對二元一次方程概念的理解應注意以下幾點:
①等號兩邊的代數式是否是整式;
②在方程中“元”是指未知數,‘二元’是指方程中含有兩個未知數;
(2)二元一次方程的解
使二元一次方程兩邊相等的一組未知數的值,叫做二元一次方程的一個解.
對二元一次方程的解的理解應注意以下幾點:
①一般地,一個二元一次方程的解有無數個,且每一個解都是指一對數值,而不是指單獨的一個未知數的值;
②二元一次方程的一個解是指使方程左右兩邊相等的一對未知數的值;反過來,如果一組數值能使二元一次方程左右兩邊相等,那麼這一組數值就是方程的解;
二元線性方程組
"5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。 2x+3y=4
目錄
詞條目錄
二元線性方程組簡介
定義
性質
方程組
概念
應用
消元法
消元方法
例子
其他方法
換元法
整體代入
關閉
定義
二元線性方程組實質上就是二元一次方程組。因為二元一次方程的圖象是一條直線,所以有時就將二元一次方程稱之為線性方程,將二元一次方程組稱之為線性方程組。
線性方程組的一般形式為:
A1x+B1y+C1=0
A2x+B2y+C2=0.
性質
方程組
(1)二元一次方程組:由兩個二元一次方程所組成的一組方程,叫做二元一次方程組.
(2)二元一次方程組的解:二元一次方程組中兩個方程的公共解,叫做二元一次方程組的解.
對二元一次方程組的理解應注意:
①方程組各方程中,相同的字母必須代表同一數量,否則不能將兩個方程合在一起.
②怎樣檢驗一組數值是不是某個二元一次方程組的解,常用的方法如下:將這組數值分別代入方程組中的每個方程,只有當這組數值滿足其中的所有方程時,才能說這組數值是此方程組的解,否則,如果這組數值不滿足其中任一個方程,那麼它就不是此方程組的解.
概念
方程兩邊都是整式,含有兩個未知數,並且含有未知數的項的次數都是1的方程,叫做二元一次方程.
你能區分這些方程嗎?5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。
對二元一次方程概念的理解應注意以下幾點:
①等號兩邊的代數式是否是整式;
②在方程中“元”是指未知數,‘二元’是指方程中含有兩個未知數;
(2)二元一次方程的解
使二元一次方程兩邊相等的一組未知數的值,叫做二元一次方程的一個解.
對二元一次方程的解的理解應注意以下幾點:
①一般地,一個二元一次方程的解有無數個,且每一個解都是指一對數值,而不是指單獨的一個未知數的值;
②二元一次方程的一個解是指使方程左右兩邊相等的一對未知數的值;反過來,如果一組數值能使二元一次方程左右兩邊相等,那麼這一組數值就是方程的解;