回覆列表
  • 1 # 使用者7848980267795

    形態各異,呈塊狀、管狀、分叉狀、傘狀、杯狀、扇狀或不定形,體型從極其微小至2米長,常在其附著的基質上形成薄薄的覆蓋層。它們或色澤單一或十分絢麗,這顏色源自類胡蘿蔔素,主要為黃色到紅色。 海綿動物除了個別的科沒有骨骼之外,其他所有的種類都是具有骨骼的,骨骼是海綿動物的一個典型特徵,是用以分類的重要依據之一。海綿動物的骨骼有骨針及海綿絲兩種型別,它們或散佈在中膠層內,或突出到體表,或構成網架狀。骨骼具有支援及保護身體的功能。骨針的成分或是由碳酸鈣組成鈣質骨針,或是矽質骨針,其中還都可能包括微量的銅、鎂、鋅等離子。骨針按其大小又可分為大骨針,構成支援身體的骨架;及小骨針,它散佈在中膠層內,以支援體壁中的管道部分。小骨針僅存在於矽質海綿中。從形態上骨針可以分為多種,其中常見的有:(1)單軸骨針,即沿一個軸生長形成的骨針,軸或直或彎,軸的兩端或相似或不相似,末端或尖或具有其他改變;(2)四軸骨針,也稱四放骨針,這種骨針在一個平面上有四個放射端,但常因丟失一些放射端而變成三放、二放或一放型,三放骨針是鈣質海綿綱動物中最普通的一種骨骼;海綿動物(3)三軸骨針,它的三個軸相互以直角癒合,因而呈六放型,這種也常減少末端而改變放數,其末端可以彎曲、分枝、或具鈞、具結等變化而形成了多種形態;(4)多軸骨針,由中心向外伸出多射,形成星壯,這種型別多見於小骨針。不同種的海綿,各種骨針或彼此分離,或按一定結構形成疏鬆的或堅實的網架以支援身體,因此可根據骨針的型別、數量及排列而作為海綿動物分類的依據。海綿絲是一種纖維狀骨骼,它是由硬蛋白組成,它們或單獨的存在於海綿動物體壁內,或與矽質骨針同時存在。許多小的矽質骨針埋在海綿絲中,形成有效地支援物。許多大型群體海綿常同時存在著這兩種骨骼。海綿動物的骨針及海綿絲都是由中膠層中的變形細胞特化形成的造骨細胞所形成。單軸的鈣質骨針是由一個造骨細胞分泌形成,骨針形成時,造骨細胞核先分裂,並在雙核細胞的中心出現一個有機質的細絲,然後圍繞這一細絲沉積碳酸鈣,隨著骨針的逐漸增長,雙核細胞也分成兩個細胞,並分別加長骨針的兩端,最後形成一個單軸骨針。同樣,三軸骨針是由三個造骨細胞聚集在一起,每個細胞也隨著有機質細絲的形成而分裂一次,形成六個細胞,碳酸鈣圍繞有機質細絲沉積癒合的結果形成了一個三軸型骨針。海綿絲是由許多造骨細胞聯合形成,先是由少數細胞形成分離的小段,然後再癒合成長的海綿絲。在尋常海綿綱動物中,這些海綿絲再相互聯結形成網狀骨架。 體型 從微小至2米長;其中最大的物種分佈於南極洲和加勒比海。 形態 海綿動物所有海綿動物的結構都十分相似;它們簡單的體壁包括表皮(上皮)、連線(連合)組織和多種型別的細胞,其中包括能透過原生質的流動來移動(變形運動)的細胞(變形細胞)。這些變形細胞在其內部組織中游移,拉伸骨針併產生海綿硬蛋白絲。海綿動物並非完全不能移動,它們身體的主體能透過肌細胞的移動進行有限的活動,但在通常情況下,它們卻往往固定在同一地點紋絲不動。海綿動物的身體柔軟,但許多觸控起來卻很結實,這是因為它們的內骨骼是由堅硬的含鈣或含矽、桿狀或星狀的骨針和/或網狀蛋白質纖維即海綿硬蛋白所組成的,譬如浴海綿就是如此。有些物種的骨針可能穿透其海綿表面,一旦人們觸控它們就會引起面板感染。海綿動物是濾食動物,它們濾取水中細小的碎石和細菌為食,分解其中的氧氣和有機物並將廢棄物排走。水透過海綿動物體表的細孔進入水溝系,並移動到順著環細胞或襟細胞這類有鞭毛的細胞排列的小室中;環細胞吸收透過在變形細胞間傳遞的食物顆粒,最後常透過其體表上火山狀的排水孔將水排出體外;水主要在環細胞鞭毛的作用下,穿過海綿動物的全身。海綿動物身體的基本結構是由兩層細胞圍繞中央的一個空腔所組成。遊離的一端有假胃腔一個大的出水口(osculum)使中央腔(central cavity)與外界相通。構成海綿動物體壁的兩層細胞在不同的種類組成複雜程度不同的溝系,根據溝系可以將海綿動物的身體結構分為三種類型。 單溝型 單溝型(ascon type)是最原始,也是最簡單的體壁結構,種類很少,前述的白枝海綿就屬於這一類。單溝型海綿呈單體或群體,長度一般不超過10cm,群體中的個體輪廓明顯,每個個體均呈小管狀,出水口周圍有骨針包圍,中央腔寬闊,體壁由兩層細胞中間夾有中膠質(mesoglea)所組成,外層細胞稱皮層(dermal epithelium),主要是由一層扁平細胞(pinacocytes)組成,它不同於其他動物的表皮層細胞,因為它們的來源和其他多細胞動物的表皮層不同,並且這種扁平細胞沒有基膜,細胞的邊緣可以收縮。許多扁平細胞同時收縮可以使身體變小。某些扁平細胞特化形成管狀,稱為孔細胞(porocyte),穿插在扁平細胞之間。孔細胞的外端與外界相通,內端與中央腔相通,孔細胞外端的小孔就是單溝型海綿動物體表的進水小孔(ostia)或稱流入孔(incurrent pore),所以它是細胞內孔,水由流入孔進入中央腔。孔細胞的收縮及舒張可以控制水的流入量。體壁的內層也稱胃層(gastral epithelium),是由領鞭毛細胞(也簡稱領細胞)組成,單溝型海綿的領細胞圍繞著整個中央腔。領細胞呈卵圓形,其基部疏鬆的坐落在中膠層中,遊離端伸出一根鞭毛,圍繞鞭毛的基部有一可伸縮的原生質領,是由許多分離的微絨毛(microvilli)所組成。單溝型海綿透過領細胞鞭毛的擺動使水由孔細胞(或稱入水小孔)流入,經中央腔再由出水口流出。水溝系分類領細胞在形態上非常相似於原生動物門的領鞭毛蟲,因此有人認為海綿動物是由領鞭毛蟲進化而來。體壁的皮層與胃層之間是中膠層,它是一種含有蛋白質的膠狀透明基質,其中包括有遊離的變形細胞(amoebocyte)及分散的骨針(spicule)。變形細胞可以分化成不同的形態,例如有的變形細胞偽足細長分枝,彼此相連形成網狀,稱為星芒細胞(collencyte),有人認為它是一種最原始的具有神經機能的細胞。另一種細胞較大,其細胞核也較大,有葉狀偽足,稱原細胞(archeocyte),這是一種未分化的細胞,除了本身具有吞噬及消化食物的機能外,它還可以轉化成具生殖功能的生殖細胞(generative cell)、能分泌骨骼的造骨細胞(scleroblast)、貯藏營養物質的貯存細胞(thesocyte)、能分泌粘液的腺細胞(gland cell)等。從上述可以看出單溝型海綿動物最大特徵是體壁結構簡單,其兩層細胞平直的包圍中央腔。由於中央腔寬闊,靠領細胞的鞭毛打動使流過身體的水流速度是緩慢的,代謝較低,所以單溝型海綿動物一般都是小型的。海綿動物在進化過程中透過體壁的褶疊增加了領細胞的數量及分佈的表面積,同時減少了中央腔的體積,其結果是形成了雙溝型或復溝型的體壁,這樣就加速了水流過身體的速度,提高了代謝的能力,使動物也增大了體積。 雙溝型 雙溝型(sycon type)是體壁褶疊的一種初步形式,例如樽海綿(Scypha)、毛壺(Grantia)等。雙溝型海綿皮層的扁平細胞褶向中膠層,形成多個平行排列的盲管,稱為流入管(incurrent canal),流入管外端的開孔名為流入孔(incurrentpore)。胃層的領細胞由中央腔向外端突出也形成多個穿插於流入管之間的盲管,稱為鞭毛管(flagellated canal)或鞭毛室,也稱為放射管(radial canal),其內端的開孔稱為後幽門孔(apopyle),結果流入管與鞭毛管相間排列形成了雙溝型的體壁。相鄰的流入管與鞭毛管之間也有小孔使兩管相通,這種小孔稱前幽門孔(prosopyle)。由於管道的出現,雙溝型的體壁加厚了,也由於領細胞褶入到鞭毛管中,中央腔壁上不再有領細胞,而是由扁平細胞包圍。雙溝型海綿的水流途徑是:水→流入孔→流入管→前幽門孔→鞭毛管→後幽門孔→中央腔→出水口→體外。雙溝型海綿增加了領細胞層的面積,管道的增加及中央腔的縮小也加速了水流透過身體的速度。雙溝型海綿中,有些種類其皮層細胞及中膠層更發達,以致遮蓋了整個體表,形成了一層或薄厚不一的外皮(cortex),結果出現了更多的流入孔,這樣可以增加體壁內的水壓,加速水在體內的流動。 復溝型 體壁進一步的褶疊複雜化就形成了復溝型,大多數的海綿動物屬於這種型別,例如淡水海綿。復溝型結構的變化表現在:(1)鞭毛管繼續向中膠層內褶入,以致形成了多個圓形的鞭毛室,例如細芽海綿每平方毫米的體壁,鞭毛室可多達1000個;(2)中膠層更發達,並與表皮細胞一起構成了眾多的皮層孔或皮下腔;(3)流入管分成許多小枝,然後再進入鞭毛室;(4)中央腔進一步地縮小,最後被分枝的出水管所代替。復溝型海綿的水流途徑是:水→皮層孔→皮下腔→流入管→前幽門孔→鞭毛室→後幽門孔→流出管→出水口→體外。在有些復溝型海綿,其前、後幽門孔延伸形成了前、後幽門管,結構更復雜。因此復溝型海綿動物具有更大的領細胞表面積,體內有縱橫相通的管道,中央腔也進一步縮小變成了管狀,因此流經體內的水流量增多,水流速度加快。復溝型海綿的體積也都是較大型的,特別是在群體大型海綿中,我們僅能從許多出水口判斷出海綿個體的形態及大小,例如磯海綿。淡水海綿的群體成團狀,已很難判斷出個體的形態了。

  • 中秋節和大豐收的關聯?
  • 你認為學校班級裡的家長群有沒有必要存在?沒有是不是沒什麼區別或者會更好?