函式的定義:給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。
我們把這個關係式就叫函式關係式,簡稱函式。函式概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。
複變函式論中用幾何方法來說明、解決問題的內容,一般叫做幾何函式論,複變函式可以透過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函式所實現的映象就都是共形映象,共形映象也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
廣義解析函式的應用範圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,自2002年來這方面的理論發展十分迅速。
擴充套件資料:
函式的特性
(1)有界性。設函式f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界。
(2)單調性。設函式f(x)的定義域為D,區間I包含於D。如果對於區間上任意兩點x1及x2,當x1
函式的定義:給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。
我們把這個關係式就叫函式關係式,簡稱函式。函式概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。
複變函式論中用幾何方法來說明、解決問題的內容,一般叫做幾何函式論,複變函式可以透過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函式所實現的映象就都是共形映象,共形映象也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
廣義解析函式的應用範圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,自2002年來這方面的理論發展十分迅速。
擴充套件資料:
函式的特性
(1)有界性。設函式f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界。
(2)單調性。設函式f(x)的定義域為D,區間I包含於D。如果對於區間上任意兩點x1及x2,當x1