試驗中要考察的指標稱為試驗指標,影響試驗指標的條件稱為因素,因素所處的狀態稱為水平,若試驗中只有一個因素改變則稱為單因素試驗,若有兩個因素改變則稱為雙因素試驗,若有多個因素改變則稱為多因素試驗。方差分析就是對試驗資料進行分析,檢驗方差相等的多個正態總體均值是否相等,進而判斷各因素對試驗指標的影響是否顯著,根據影響試驗指標條件的個數可以區分為單因素方差分析、雙因素方差分析和多因素方差分析。
中文名
單因素方差分析
外文名
one-way analysis of variance
所屬學科
數學(統計學)
相關概念
單因素試驗,方差分析等
簡介
單因素試驗中的方差分析
快速
導航
假設前提偏差平方和及其分解SE與SA的統計特性
基本概念
在方差分析中,我們將要考察的物件的某種特徵稱為試驗指標,影響試驗指標的條件稱為因素,因素可分為兩類,一類是人們可以控制的(如原材料、裝置、學歷、專業等因素);另一類人們無法控制的(如員工素質與機遇等因素)。下面所討論的因素都是指可控制因素。每個因素又有若干個狀態可供選擇,因素可供選擇的每個狀態稱為該因素的水平。如果在一項試驗中只有一個因素在改變,則稱為單因素試驗;如果多於一個因素在改變,則稱為多因素試驗。因素常用大寫字母A,B,C,…來表示,因素A的水平用
假設前提
設單因素A具有r個水平,分別記為
,在每個水平
下,要考察的指標可以看成一個總體,故有r個總體,並假設:
(1)每個總體均服從正態分佈,即
;
(2)每個總體的方差σ2相同;
(3)從每個總體中抽取的樣本
相互獨立,i=1,2,…,r。
此處的
均未知,將假設及相關符號列表,如表1所示[1]。
試驗中要考察的指標稱為試驗指標,影響試驗指標的條件稱為因素,因素所處的狀態稱為水平,若試驗中只有一個因素改變則稱為單因素試驗,若有兩個因素改變則稱為雙因素試驗,若有多個因素改變則稱為多因素試驗。方差分析就是對試驗資料進行分析,檢驗方差相等的多個正態總體均值是否相等,進而判斷各因素對試驗指標的影響是否顯著,根據影響試驗指標條件的個數可以區分為單因素方差分析、雙因素方差分析和多因素方差分析。
中文名
單因素方差分析
外文名
one-way analysis of variance
所屬學科
數學(統計學)
相關概念
單因素試驗,方差分析等
簡介
單因素試驗中的方差分析
快速
導航
假設前提偏差平方和及其分解SE與SA的統計特性
基本概念
在方差分析中,我們將要考察的物件的某種特徵稱為試驗指標,影響試驗指標的條件稱為因素,因素可分為兩類,一類是人們可以控制的(如原材料、裝置、學歷、專業等因素);另一類人們無法控制的(如員工素質與機遇等因素)。下面所討論的因素都是指可控制因素。每個因素又有若干個狀態可供選擇,因素可供選擇的每個狀態稱為該因素的水平。如果在一項試驗中只有一個因素在改變,則稱為單因素試驗;如果多於一個因素在改變,則稱為多因素試驗。因素常用大寫字母A,B,C,…來表示,因素A的水平用
假設前提
設單因素A具有r個水平,分別記為
,在每個水平
下,要考察的指標可以看成一個總體,故有r個總體,並假設:
(1)每個總體均服從正態分佈,即
;
(2)每個總體的方差σ2相同;
(3)從每個總體中抽取的樣本
相互獨立,i=1,2,…,r。
此處的
均未知,將假設及相關符號列表,如表1所示[1]。