煤、石油等礦物燃料燃燒時釋放的能量,來自碳、氫、氧的化合反應。 一般化學炸藥如梯恩梯(TNT)爆炸時釋放的能量,來自化合物的分解反應。在這些化學反應裡,碳、氫、氧、氮等原子核都沒有變化,只是各個原子之間的組合狀態有了變化。核反應與化學反應則不一樣。在核裂變或核聚變反應裡,參與反應的原子核都轉變成其他原子核,原子也發生了變化。人們習慣上稱這類武器為原子武器。但實質上是原子核的反應與轉變,所以稱核武器更為確切。核武器爆炸時釋放的能量,比只裝化學炸藥的常規武器要大得多。例如,1千克鈾全部裂變釋放的能量約8×1013焦耳,比1千克梯恩梯炸藥爆炸釋放的能量4.19×106焦耳約大2000萬倍。核武器爆炸釋放的總能量,即其威力的大小,常用釋放相同能量的梯恩梯炸藥量來表示,稱為梯恩梯當量。美、蘇等國裝備的各種核武器的梯恩梯當量,小的僅1000噸,甚至更低;大的達1000萬噸,甚至更高。 核武器爆炸,不僅釋放的能量巨大,而且核反應過程非常迅速,微秒級的時間內即可完成。因此,在核武器爆炸周圍不大的範圍內形成極高的溫度,加熱並壓縮周圍空氣使之急速膨脹,產生高壓衝擊波。地面和空中核爆炸,還會在周圍空氣中形成火球,發出很強的光輻射。核反應還產生各種射線和放射性物質碎片;向外輻射的強脈衝射線與周圍物質相互作用,造成電流的增長和消失過程,其結果又產生電磁脈衝。這些不同於化學炸藥爆炸的特徵,使核武器具備特有的強衝擊波、光輻射、早期核輻射、放射性沾染和核電磁脈衝等殺傷破壞作用。核武器的出現,對現代戰爭的戰略戰術產生了重大影響。原子彈主要是利用核裂變釋放出來的巨大能量來起殺傷作用的一種武器。它與核反應堆一樣,依據的同樣是核裂變鏈式反應。按理,反應堆既然能實現鏈式反應,那麼只要使它的中子增殖係數k大於1,不加控制,鏈式反應的規模將越來越大,則最終會發生爆炸。也就是說,反應堆也可以成為一顆“原子彈”。實際上也是這樣,若增殖係數k大於1而不加控制的話,反應堆確實會發生爆炸,所謂反應堆超臨界事故就是屬於這樣一種情況。反應堆重達幾百噸、幾千噸,無法作為武器使用。而且在這種情況下,裂變物質的利用率很低,爆炸威力也不大。要製造原子彈,首先要減小臨界質量,同時要提高爆炸威力。這就要求原子彈必須利用快中子裂變體系,裝藥必須是高濃度的裂變物質,同時要求裝藥量大大超過臨界質量,以使增殖係數k遠遠大於1。原子彈的裝藥,能大量得到、並可以用作原子彈裝藥的還只限於鈾235、鈽239和鈾233三種裂變物質。鈾235是原子彈的主要裝藥。要獲得高加濃度的鈾235並不是一件輕而易舉的事,這是因為,天然鈾235的含量很小,大約140個鈾原子中只含有1個鈾235原子,而其餘139個都是鈾238原子;尤其是鈾235和鈾238是同一種元素的同位素,它們的化學性質幾乎沒有差別,而且它們之間的相對質量差也很小。用普通的化學方法無法將它們分離;採用分離輕元素同位素的方法也無濟於事。 為了獲得高加濃度的鈾235,早期,科學家們曾用多種方法來攻此難關。最後“氣體擴散法”終於獲得了成功。鈾235原子約比鈾238原子輕1.3%,如果讓這兩種原子處於氣體狀態,鈾235原子就會比鈾238原子運動得稍快一點,這兩種原子就可稍稍得到分離。氣體擴散法所依據的,就是鈾235原子和鈾238原子之間這一微小的質量差異。這種方法首先要求將鈾轉變為氣體化合物。六氟化鈾是唯一合適的一種氣體化合物。這種化合物在常溫常壓下是固體,但很容易揮發,在56.4℃即昇華成氣體。鈾235的六氟化鈾分子與鈾238的六氟化鈾分子相比,兩者質量相差不到百分之一,但事實證明,這個差異已足以使它們分離了。六氟化鈾氣體在加壓下被迫透過一個多孔隔膜。含有鈾235的分子透過多孔隔膜稍快一點,所以每透過一個多孔隔膜,鈾235的含量就會稍增加一點,但是增加的程度是十分微小的。要獲得幾乎純的鈾235,就需要讓六氟化鈾氣體數千次地透過多孔隔膜。氣體擴散法投資很高,耗電量很大,但這種方法仍是實現工業應用的唯一方法。為了尋找更好的鈾同位素分離方法,許多國家做了大量的研究工作,已取得了一定的成績。例如離心法已向工業生產過渡,噴嘴法等已處於中間工廠試驗階段,而新興的冠醚化學分離法和鐳射分離法等則更有吸引力。可以相信,今後一定會有更多更好的分離鈾同位素的方法付諸實用,氣體擴散法的壟斷地位必將結束。原子彈的另一種重要裝藥是鈽239。鈽239是透過反應堆生產的。在反應堆內,鈾238吸收一箇中子,不發生裂變而變成鈾239,鈾239衰變成錼239,錼239衰變成鈽239。由於鈽與鈾是不同的元素,因此雖然只有很少一部分鈾轉變成了鈽,但鈽與鈾之間的分離,比起鈾同位素間的分離來卻要容易得多,因而可以比較方便地用化學方法提取純鈽。鈾233也是原子彈的一種裝藥,它是透過釷232在反應堆內經中子轟擊,生成釷233,再相繼經兩次β衰變而製得。從上面可以看到,後兩種裝藥是透過反應堆生產的。它們是依靠鈾235裂變時放出的中子生成的,也就是說,它們的生成是以消耗鈾235為代價的,絲毫也離不開鈾235。從這個意義上來說,完全可以把鈾235稱作“核火種”,因為沒有鈾235就沒有反應堆,就沒有原子彈,就沒有大規模的原子能利用。有了核裝藥,只要使它們的體積或質量超過一定的臨界值,就可以實現原子彈爆炸了。只是這裡還有一個原子彈的引發問題,也就是如何做到:不需要它爆炸時,它就不爆炸;需要它爆炸時,它就能立即爆炸。這可以透過臨界質量或臨界尺寸的控制來實現。從原理上講,最簡單的原子彈採用的是所謂槍式結構。兩塊均小於臨界質量的鈾塊,相隔一定的距離,不會引起爆炸,當它們合在一起時,就大於臨界質量,立刻發生爆炸。但是若將它們慢慢地合在一起,那麼鏈式反應剛開始不久,所產生的能量就足以將它們本身吹散,而使鏈式反應停息,原子彈的爆炸威力和核裝藥的利用率就很小,這與反應堆超臨界事故爆炸時的情況有些相似。因此關鍵問題是要使它們能夠極迅速地合在一起。這可以象旁圖所示的那樣,將一部分鈾放在一端,而將另一部分鈾放在“炮筒”內,藉助於烈性炸藥,極迅速地將它們完全合在一起,造成超臨界,產生高效率的爆炸。為了減少中子損失,核裝藥的外面有一層中子反射層;為了延遲核裝藥的飛散,原子彈具有堅固的外殼。 1945年8月,美國投到日本廣島的那顆原子彈(代號叫“小男孩”)採用的就是槍式結構,彈重約4100公斤,直徑約71釐米,長約305釐米。核裝藥為鈾235,爆炸威力約為14000噸梯恩梯當量。在槍式結構中,每塊核裝藥不能太大,最多隻能接近於臨界質量,而決不能等於或超過臨界質量。因此當兩塊核裝藥合攏時,總質量最多隻能比臨界質量多出近一倍。這就使得原子彈的爆炸威力受到了限制。另外在槍式結構中,兩塊核裝藥雖然高速合攏,但在合攏過程中所經歷的時間仍然顯得過長,以致於在兩塊核裝藥尚未充分合並以前,就由自發裂變所釋放的中子引起爆炸。這種“過早點火”造成低效率爆炸,使核裝藥的利用率很低。一公斤鈾235(或鈽239)全部裂變,大約能釋放18000噸梯恩梯當量的能量,一顆原子彈的核裝藥一般為15~25公斤鈾235(或6~8公斤鈽239),以此計算,“小男孩”的核裝藥利用率還不到百分之五。鈾在正常壓力下的密度約為19克/釐米。在高壓下,鈾可被壓縮到更高的密度。研究表明,對於一定的裂變物質,密度越高,臨界質量越小。根據這一特性,在發展槍式結構的同時,還發展了一種內爆式結構。在槍式結構中,原子彈是在正常密度下用突然增加裂變物質數量的方法來達到超臨界,而內爆式結構原子彈則是利用突然增加壓力,從而增加密度的方法達到超臨界。在內爆式結構中,將高爆速的烈性炸藥製成球形裝置,將小於臨界質量的核裝料製成小球,置於炸藥中。透過電雷管同步點火,使炸藥各點同時起爆,產生強大的向心聚焦壓縮波(又稱內爆波),使外圍的核裝藥同時向中心合攏,使其密度大大增加,也就是使其大大超臨界。再利用一個可控的中子源,等到壓縮波效應最大時,才把它“點燃”。這樣就實現了自持鏈式反應,導致極猛烈的爆炸。內爆式結構優於槍式結構的地方,在於壓縮波效應所需的時間遠較槍式結構合攏的時間短促,因而“過早點火”的機率大為減小。這樣,內爆式結構就可以使用自發裂變機率較大的裂變物質,如鈽239作核裝藥;同時使利用效率大為增。 美國投於日本長崎的那顆原子彈(代號叫“胖子”),採用的就是內爆式結構,以鈽239作核裝藥。彈重約4500公斤,彈最粗處直徑約152釐米,彈長約320釐米,爆炸威力估計為20000噸梯恩梯當量。原子彈的進一步發展就是氫彈,或稱為熱核武器。氫彈利用的是某些輕核聚變反應放出的巨大能量。它的裝藥可以是氘和氚,也可以是氘化鋰6,這些物質稱為熱核材料。按單位重量的物質計,核聚變反應放出的能量比裂變反應更多,而且沒有所謂臨界質量的限制,因而氫彈的爆炸威力更大,一般要比原子彈大幾百倍到上千倍。不過熱核反應只有在極高的溫度(幾千萬度)下才能進行,而這樣高的溫度只有在原子彈爆炸時才能產生,因此氫彈必須用原子彈作為點燃熱核材料的“雷管”。氫彈爆炸時會放出大量的高能中子,這些高能中子能使鈾238發生裂變。因此在一般氫彈外面包一層鈾238,就能大大提高爆炸威力。這種核彈的爆炸,經歷裂變一聚變—裂變三個過程,所以稱為“三相彈”。它的特點是成本低、威力大、放射性汙染多。還有一種新型核彈,即所謂中子彈。中子彈實際上可能是一種小型氫彈,只不過這種小型氫彈中裂變的成分非常小,而聚變的成分非常大,因而衝擊波和核輻射的效應很弱,但中子流極強。它靠極強的中子流起殺傷作用,據稱能做到“殺人而不毀物”。原子彈是用鈾製造的,也可以用鈽製造,但鈽是透過鈾而製得的。而氫彈則必須用原子彈來引。因此,歸根結幫,核武器、熱核武器的製造都離不開鈾。因此,在過去,在今天,在今後相當長一個時期內,最重的天然元素之所以重要,首先在於軍事上的需要。
向左轉|向右轉
煤、石油等礦物燃料燃燒時釋放的能量,來自碳、氫、氧的化合反應。 一般化學炸藥如梯恩梯(TNT)爆炸時釋放的能量,來自化合物的分解反應。在這些化學反應裡,碳、氫、氧、氮等原子核都沒有變化,只是各個原子之間的組合狀態有了變化。核反應與化學反應則不一樣。在核裂變或核聚變反應裡,參與反應的原子核都轉變成其他原子核,原子也發生了變化。人們習慣上稱這類武器為原子武器。但實質上是原子核的反應與轉變,所以稱核武器更為確切。核武器爆炸時釋放的能量,比只裝化學炸藥的常規武器要大得多。例如,1千克鈾全部裂變釋放的能量約8×1013焦耳,比1千克梯恩梯炸藥爆炸釋放的能量4.19×106焦耳約大2000萬倍。核武器爆炸釋放的總能量,即其威力的大小,常用釋放相同能量的梯恩梯炸藥量來表示,稱為梯恩梯當量。美、蘇等國裝備的各種核武器的梯恩梯當量,小的僅1000噸,甚至更低;大的達1000萬噸,甚至更高。 核武器爆炸,不僅釋放的能量巨大,而且核反應過程非常迅速,微秒級的時間內即可完成。因此,在核武器爆炸周圍不大的範圍內形成極高的溫度,加熱並壓縮周圍空氣使之急速膨脹,產生高壓衝擊波。地面和空中核爆炸,還會在周圍空氣中形成火球,發出很強的光輻射。核反應還產生各種射線和放射性物質碎片;向外輻射的強脈衝射線與周圍物質相互作用,造成電流的增長和消失過程,其結果又產生電磁脈衝。這些不同於化學炸藥爆炸的特徵,使核武器具備特有的強衝擊波、光輻射、早期核輻射、放射性沾染和核電磁脈衝等殺傷破壞作用。核武器的出現,對現代戰爭的戰略戰術產生了重大影響。原子彈主要是利用核裂變釋放出來的巨大能量來起殺傷作用的一種武器。它與核反應堆一樣,依據的同樣是核裂變鏈式反應。按理,反應堆既然能實現鏈式反應,那麼只要使它的中子增殖係數k大於1,不加控制,鏈式反應的規模將越來越大,則最終會發生爆炸。也就是說,反應堆也可以成為一顆“原子彈”。實際上也是這樣,若增殖係數k大於1而不加控制的話,反應堆確實會發生爆炸,所謂反應堆超臨界事故就是屬於這樣一種情況。反應堆重達幾百噸、幾千噸,無法作為武器使用。而且在這種情況下,裂變物質的利用率很低,爆炸威力也不大。要製造原子彈,首先要減小臨界質量,同時要提高爆炸威力。這就要求原子彈必須利用快中子裂變體系,裝藥必須是高濃度的裂變物質,同時要求裝藥量大大超過臨界質量,以使增殖係數k遠遠大於1。原子彈的裝藥,能大量得到、並可以用作原子彈裝藥的還只限於鈾235、鈽239和鈾233三種裂變物質。鈾235是原子彈的主要裝藥。要獲得高加濃度的鈾235並不是一件輕而易舉的事,這是因為,天然鈾235的含量很小,大約140個鈾原子中只含有1個鈾235原子,而其餘139個都是鈾238原子;尤其是鈾235和鈾238是同一種元素的同位素,它們的化學性質幾乎沒有差別,而且它們之間的相對質量差也很小。用普通的化學方法無法將它們分離;採用分離輕元素同位素的方法也無濟於事。 為了獲得高加濃度的鈾235,早期,科學家們曾用多種方法來攻此難關。最後“氣體擴散法”終於獲得了成功。鈾235原子約比鈾238原子輕1.3%,如果讓這兩種原子處於氣體狀態,鈾235原子就會比鈾238原子運動得稍快一點,這兩種原子就可稍稍得到分離。氣體擴散法所依據的,就是鈾235原子和鈾238原子之間這一微小的質量差異。這種方法首先要求將鈾轉變為氣體化合物。六氟化鈾是唯一合適的一種氣體化合物。這種化合物在常溫常壓下是固體,但很容易揮發,在56.4℃即昇華成氣體。鈾235的六氟化鈾分子與鈾238的六氟化鈾分子相比,兩者質量相差不到百分之一,但事實證明,這個差異已足以使它們分離了。六氟化鈾氣體在加壓下被迫透過一個多孔隔膜。含有鈾235的分子透過多孔隔膜稍快一點,所以每透過一個多孔隔膜,鈾235的含量就會稍增加一點,但是增加的程度是十分微小的。要獲得幾乎純的鈾235,就需要讓六氟化鈾氣體數千次地透過多孔隔膜。氣體擴散法投資很高,耗電量很大,但這種方法仍是實現工業應用的唯一方法。為了尋找更好的鈾同位素分離方法,許多國家做了大量的研究工作,已取得了一定的成績。例如離心法已向工業生產過渡,噴嘴法等已處於中間工廠試驗階段,而新興的冠醚化學分離法和鐳射分離法等則更有吸引力。可以相信,今後一定會有更多更好的分離鈾同位素的方法付諸實用,氣體擴散法的壟斷地位必將結束。原子彈的另一種重要裝藥是鈽239。鈽239是透過反應堆生產的。在反應堆內,鈾238吸收一箇中子,不發生裂變而變成鈾239,鈾239衰變成錼239,錼239衰變成鈽239。由於鈽與鈾是不同的元素,因此雖然只有很少一部分鈾轉變成了鈽,但鈽與鈾之間的分離,比起鈾同位素間的分離來卻要容易得多,因而可以比較方便地用化學方法提取純鈽。鈾233也是原子彈的一種裝藥,它是透過釷232在反應堆內經中子轟擊,生成釷233,再相繼經兩次β衰變而製得。從上面可以看到,後兩種裝藥是透過反應堆生產的。它們是依靠鈾235裂變時放出的中子生成的,也就是說,它們的生成是以消耗鈾235為代價的,絲毫也離不開鈾235。從這個意義上來說,完全可以把鈾235稱作“核火種”,因為沒有鈾235就沒有反應堆,就沒有原子彈,就沒有大規模的原子能利用。有了核裝藥,只要使它們的體積或質量超過一定的臨界值,就可以實現原子彈爆炸了。只是這裡還有一個原子彈的引發問題,也就是如何做到:不需要它爆炸時,它就不爆炸;需要它爆炸時,它就能立即爆炸。這可以透過臨界質量或臨界尺寸的控制來實現。從原理上講,最簡單的原子彈採用的是所謂槍式結構。兩塊均小於臨界質量的鈾塊,相隔一定的距離,不會引起爆炸,當它們合在一起時,就大於臨界質量,立刻發生爆炸。但是若將它們慢慢地合在一起,那麼鏈式反應剛開始不久,所產生的能量就足以將它們本身吹散,而使鏈式反應停息,原子彈的爆炸威力和核裝藥的利用率就很小,這與反應堆超臨界事故爆炸時的情況有些相似。因此關鍵問題是要使它們能夠極迅速地合在一起。這可以象旁圖所示的那樣,將一部分鈾放在一端,而將另一部分鈾放在“炮筒”內,藉助於烈性炸藥,極迅速地將它們完全合在一起,造成超臨界,產生高效率的爆炸。為了減少中子損失,核裝藥的外面有一層中子反射層;為了延遲核裝藥的飛散,原子彈具有堅固的外殼。 1945年8月,美國投到日本廣島的那顆原子彈(代號叫“小男孩”)採用的就是槍式結構,彈重約4100公斤,直徑約71釐米,長約305釐米。核裝藥為鈾235,爆炸威力約為14000噸梯恩梯當量。在槍式結構中,每塊核裝藥不能太大,最多隻能接近於臨界質量,而決不能等於或超過臨界質量。因此當兩塊核裝藥合攏時,總質量最多隻能比臨界質量多出近一倍。這就使得原子彈的爆炸威力受到了限制。另外在槍式結構中,兩塊核裝藥雖然高速合攏,但在合攏過程中所經歷的時間仍然顯得過長,以致於在兩塊核裝藥尚未充分合並以前,就由自發裂變所釋放的中子引起爆炸。這種“過早點火”造成低效率爆炸,使核裝藥的利用率很低。一公斤鈾235(或鈽239)全部裂變,大約能釋放18000噸梯恩梯當量的能量,一顆原子彈的核裝藥一般為15~25公斤鈾235(或6~8公斤鈽239),以此計算,“小男孩”的核裝藥利用率還不到百分之五。鈾在正常壓力下的密度約為19克/釐米。在高壓下,鈾可被壓縮到更高的密度。研究表明,對於一定的裂變物質,密度越高,臨界質量越小。根據這一特性,在發展槍式結構的同時,還發展了一種內爆式結構。在槍式結構中,原子彈是在正常密度下用突然增加裂變物質數量的方法來達到超臨界,而內爆式結構原子彈則是利用突然增加壓力,從而增加密度的方法達到超臨界。在內爆式結構中,將高爆速的烈性炸藥製成球形裝置,將小於臨界質量的核裝料製成小球,置於炸藥中。透過電雷管同步點火,使炸藥各點同時起爆,產生強大的向心聚焦壓縮波(又稱內爆波),使外圍的核裝藥同時向中心合攏,使其密度大大增加,也就是使其大大超臨界。再利用一個可控的中子源,等到壓縮波效應最大時,才把它“點燃”。這樣就實現了自持鏈式反應,導致極猛烈的爆炸。內爆式結構優於槍式結構的地方,在於壓縮波效應所需的時間遠較槍式結構合攏的時間短促,因而“過早點火”的機率大為減小。這樣,內爆式結構就可以使用自發裂變機率較大的裂變物質,如鈽239作核裝藥;同時使利用效率大為增。 美國投於日本長崎的那顆原子彈(代號叫“胖子”),採用的就是內爆式結構,以鈽239作核裝藥。彈重約4500公斤,彈最粗處直徑約152釐米,彈長約320釐米,爆炸威力估計為20000噸梯恩梯當量。原子彈的進一步發展就是氫彈,或稱為熱核武器。氫彈利用的是某些輕核聚變反應放出的巨大能量。它的裝藥可以是氘和氚,也可以是氘化鋰6,這些物質稱為熱核材料。按單位重量的物質計,核聚變反應放出的能量比裂變反應更多,而且沒有所謂臨界質量的限制,因而氫彈的爆炸威力更大,一般要比原子彈大幾百倍到上千倍。不過熱核反應只有在極高的溫度(幾千萬度)下才能進行,而這樣高的溫度只有在原子彈爆炸時才能產生,因此氫彈必須用原子彈作為點燃熱核材料的“雷管”。氫彈爆炸時會放出大量的高能中子,這些高能中子能使鈾238發生裂變。因此在一般氫彈外面包一層鈾238,就能大大提高爆炸威力。這種核彈的爆炸,經歷裂變一聚變—裂變三個過程,所以稱為“三相彈”。它的特點是成本低、威力大、放射性汙染多。還有一種新型核彈,即所謂中子彈。中子彈實際上可能是一種小型氫彈,只不過這種小型氫彈中裂變的成分非常小,而聚變的成分非常大,因而衝擊波和核輻射的效應很弱,但中子流極強。它靠極強的中子流起殺傷作用,據稱能做到“殺人而不毀物”。原子彈是用鈾製造的,也可以用鈽製造,但鈽是透過鈾而製得的。而氫彈則必須用原子彈來引。因此,歸根結幫,核武器、熱核武器的製造都離不開鈾。因此,在過去,在今天,在今後相當長一個時期內,最重的天然元素之所以重要,首先在於軍事上的需要。
向左轉|向右轉