首先我們要了解鋼筋的鏽蝕原理及分類
1.鋼筋的鏽蝕條件: 鋼筋混凝土構件內鋼筋的鏽蝕需要三個條件:
(1)鋼筋表面鹼性鈍化膜破壞。正常情況下鋼筋是包裹在砼之內的,砼則由於水泥的水化反應造成其初始鹼性(含有一定Ca(OH)2)較強,正常情況下鋼筋在這種鹼性環境下不會發生氧化腐蝕。當PH值大於10時,鋼筋腐蝕的速度很慢,當PH值小於5時,其鏽蝕的速度就快。由此可見,只有當鋼筋混凝土構件內的鋼筋周圍鹼性鈍化膜因砼碳化或其它原因導致破壞後,才可能出現腐蝕。
(2)必須產生電位差,使鋼筋產生微電池腐蝕式大電池腐蝕。鋼筋腐蝕,是由於鋼筋表面不同部分之間產生電位差引起的,其作用和電池一樣,在鋼筋表面有微弱的電流流動。當在鋼筋表面構成了許多微小電池,其電化學反應,按下式進行: 陽極反應(活化區):FeFe2++2e 陰極反應區:2H20+O2+4e4(OH)- 綜合反應式就是:Fe2+2(OH)一Fe(OH)2 這就是鐵變成鐵鏽的過程。當構築物(或構件)處在離子條件差別很大的兩種環境中,或遭受雜散直流電影響時,一部分鋼筋(或一部分構築物)作為陽極,而另一部分作為陰極,這樣便構成大電池腐蝕。
(3)必須具備水和氧。水和氧是鋼筋腐蝕的必要條件(尤其是水),它們均參加鋼筋電化腐蝕的陽極反應過程。水分子能穿透任何肉眼可辯的裂縫。水還能起著電解質的作用,並溶餌氧和其它如氯等的有害離子,從而加速了腐蝕速度。另外在一定條件下氧還可以造成濃度電池腐蝕。最常見的例項就是水線腐蝕。【鋼筋混凝土結構的腐蝕及防護措施】鋼筋混凝土結構的腐蝕及防護措施。如浸在海水中的鋼筋混凝土結構,在水線附近鋼筋腐蝕最為嚴重,這是由於水線以上空氣中的含氧量較高,而水線以下(水中)含氧量突然降低,造成濃度電池腐蝕,使水線以下的部位鋼筋成為陽極而腐蝕。
2.鋼筋混凝土構件中鋼筋的鏽蝕的幾種情況:
(1)由於混凝土不密實或有裂縫存在造成鋼筋的腐蝕。混凝土密實度不良和構件上產生的裂縫,往往是造成鋼筋腐蝕的很重要原因。混凝土澆築中產生露筋、蜂窩、麻面等情況,都會加速鋼筋的鏽蝕。因為孔隙和裂縫(一般在0.2ram以上時)給水(汽)、氧和其他侵蝕性介質的滲透創造了有利條件。因此,鋼筋的電化學腐蝕和混凝土密實度、裂縫的寬度、保護層的厚度、空氣的溼度以及空氣中侵蝕性介質的含量,都有直接的關係。當混凝士密實度差和鋼筋保護層不足時,各種介質就容易到達鋼筋表面造成腐蝕。
(2)由於混凝土碳化和侵蝕性氣體、介質的侵入,造成鋼筋的腐蝕。空氣中的二氧化碳氣體,在混凝土表層中逐漸為氫氧化鈣的鹼性溶液所吸收,相互反應生成碳酸鈣,這種現象稱為混凝土的碳化,亦稱“中性化”。砼碳化生成的碳酸鈣很難溶解,其飽和溶液的PH 值為9,因此混凝土碳化的結果,就使PH值不斷下降,並不斷向內部深化。混凝土碳化對混凝土強度一般無直接影響。其危害主要在於為鋼筋腐蝕提供條件,而鋼筋鏽蝕體積將發生膨脹(體積比原來提高2.2倍),混凝土保護層將因此遭到剝落和損壞,從而降低鋼筋和混凝土的工作效能;尤其對於薄殼鋼筋混凝土結構和預應力高強度鋼絲構件等,會造成嚴重的結構損壞而且這種破壞往往是脆性的,具有隱藏、突然性等特點。
(3)由於混凝土內摻入氯鹽造成鋼筋的腐蝕。為提高混凝土早期強度或抗凍效能,過去人們往往在混凝土內摻入一定量的氯鹽,如氯化鈣、氯化鈉等。氯化鈣與水泥中的氫氧化鈣、矽酸三鈣、鋁酸三鈣結合,生成高水分子複合化合物,如氯矽酸鹽等,並提高了氫氧化鈣的溶解度。混凝土中,氯鹽對鋼筋的腐蝕多呈潰瘍狀,容易造成鋼筋的應力集中:因此它的危害性是比較大的。混凝土中氯離子主要來源於原材料、外加劑加海砂、海水或氯鹽高的水,以及摻加的用氯化鈣作為促凝劑,用氯化鈉作為防凍劑等,國內外已出現多起加氯鹽過量而引起的嚴重腐蝕事件。
(4)由於高強鋼筋中的應力腐蝕隨著預應力鋼筋混凝土結構的採用,出現了高強鋼筋中的一種特殊腐蝕形式,即“應力腐蝕”。一般在表面只有輕微損害或根本看不見損害,這種腐蝕尤為危險,因為它沒有任何預兆而可以發生突然破壞。一般認為:高強鋼筋在應力(拉應力)的作用下,導致鈍化膜的破壞,裂縫比較活化,並作為陽極而腐蝕。在電化學腐蝕過程中繼續擴大,同時由於鋼筋中具有很高的拉應力,和高強鋼筋的低變形效能。因此,腐蝕和應力共同作用,使裂縫迅速向深度發展,以致鋼筋在看不到明顯的腐蝕現象的情況下會突然斷裂。
(5)電流腐蝕工業用電中的直流電,當它洩漏到地下鋼筋混凝土結構中時,會造成鋼筋的腐蝕。在這種情況下,電流流入處相當於陰極區,電流流出處相當於陽極區。目前中國一些直流電解工廠、電氣化鐵路、直流電的載流裝置等的電流洩漏現象比較多,有時比較嚴重。這些雜散電流對鋼筋混凝土結構(如基礎、梁、柱等)鋼筋的腐蝕破壞時有所見。
混凝土結構防腐蝕是系統工程,並不是說單純的鋼筋防腐,必須在勘察、規劃、設計、施工、使用等各個階段對所涉及的防腐問題進行細緻的瞭解、分析和處理,各個階段都應充分重視和充分合作,共同完成。混凝土結構防護措施可分為基本防護措施、混凝土表面塗覆防護措施和鋼筋防護措施。
混凝土的基本防護措施 混凝土的基本防護措施即是從設計、施工、製作等方面提高混凝土自身的防護效能。由於混凝土本身具有高鹼性,正確設計、施工的優質混凝土保護層本身具有長期防止環境介質滲透的功能,因此,儘可能提高混凝土本身對鋼筋的防護功能是預防鋼筋腐蝕的許多措施中最經濟合理、最有效的基本措施。這一類措施主要有以下幾方面:
(1)合理的結構設計 混凝土結構形式及細部構造應有利於防腐、檢測。如構件截面幾何形狀應簡單、平順,減少稜角、突變和應力集中;混凝土表面應有利於排水,不宜在接縫或止水處排水;特別注意構件應易於施工,儘可能在工場預製;結構形式應便於對關鍵部位進行檢測和設定檢測、維護和採取補充保護措施的通道;對處於腐蝕較嚴重部位和構件,應考慮其易於更換的可能性。 由於混凝土保護層厚度與發生腐蝕的時間成平方關係,適當增加混凝土保護層厚度,以延長侵蝕性介質滲透到鋼筋周圍達到破壞鈍化膜臨界值的時間。但保護層厚度不宜大於80mm,否則混凝土表面易出現由於混凝土收縮、溫度應力等所引起的混凝土表面裂縫。控制主筋的直徑不宜過大,原因是較粗的鋼筋提供較小的電阻,也就是提供了較大的腐蝕電流。更重要的是較粗的鋼筋會生成較多的腐蝕產物,膨脹的體積增大比較多,從而造成較高的拉應力。所以,當混凝土保護層厚度相同時,鋼筋越粗,鋼筋直徑對保護層厚度的比值越大,鋼筋開始腐蝕到開始使混凝土脹裂的時間也就越短。
(2)選擇優質原材料和最佳化混凝土配合比設計 選擇優質原材料和最佳化混凝土的配合比,以提高混凝土的抗蝕能力。如儘量減小水灰比提高混凝土的密實度,混凝土密實度高,孔隙率小,有利於提高混凝土的抗滲性,增強對侵蝕性介質的抗蝕能力;限制粗骨料的最大粒徑,減少粗骨料與水泥砂漿介面的不利影響;規定混凝土拌合物最低水泥用量(或最低膠凝材料用量),確保混凝土具有較高的鹼度;有抗凍要求時,加入合適量的引氣劑以提高混凝土的抗凍性;不得采用可能發生鹼-集料反應的活性骨料;嚴格限制砂、石、外加劑、拌和水等原材料中的氯離子含量,使混凝土拌合物中氯離子含量符合規定要求。
(3)採用高效能混凝土 高效能混凝土是指用常規材料、常規工藝,以較低水膠比、適當摻量的優質摻合料和較嚴格的質量控制製作的高耐久性,良好工作性及較高強度的混凝土。中交集團廣州四航工程技術研究院等單位開發的海工抗鹽汙染高效能混凝土,其抗氯離子滲透性比普通混凝土提高數倍,可顯著提高混凝土本身的護筋效能,從根本上提高混凝土的耐久性,從而延長結構物的安全使用壽命。目前,該項技術已成功應用於鹽田港、湛江港、洋山港、東海大橋、杭州灣大橋等多項使用年限要求50年甚至100年的大型海港工程和跨海大橋工程中。 3.2混凝土表面塗覆防護措施 除了採取措施提高混凝土本身的耐久性外,採用混凝土表面塗覆防護措施有效地將混凝土與周圍侵蝕性介質隔離開來或阻止有害介質的侵入,也是一種有效的防護措施。
混凝土表面塗層
該措施是在混凝土表面塗覆一層塗料,形成一層隔離層制止氯離子、氧、水等介質滲入混凝土,以延緩鋼筋腐蝕。
表面塗覆浸入型塗料
浸入型塗料是一種粘度很低的有機矽化合物液體,將它塗(或噴)於風乾的混凝土表面上,靠毛細孔的表面張力作用吸入(深約數毫米的混凝土表層中,它與孔壁的氫氧化鈣反應,以非極性基使毛細孔憎水化或者填充部分細孔,使孔細化。浸入型塗料不能在混凝土表面上成膜,不會形成隔離層,也不能充滿混凝土毛細孔隙,所以不會影響混凝土透氣性,透水蒸汽性,但是,它卻能顯著降低混凝土的吸水性,使水和只能溶解於水中才能被毛細管吸收作用吸進去的氯化物都難以吸進混凝土中,而混凝土中的水份卻可以化為水蒸汽自由蒸發出去,使混凝土保持乾燥,從而顯著地提高混凝土的護筋性。
鍍層鋼筋和塗層鋼筋
混凝土拌合物中摻入適量阻鏽劑,可阻止或延緩金屬和電解質介面的電化學反應,從而阻止金屬腐蝕是預防惡劣環境中鋼筋腐蝕的一種有效的補充措施。但是它不能代替優質混凝土,也就是說摻加阻鏽劑不能降低對混凝土保護層的基本要求。按照作用機理,鋼筋阻鏽劑可分為陽極型、陰極型和混合型三種。加入鋼筋阻鏽劑既推遲了鋼筋開始生鏽的時間,又減緩了鋼筋腐蝕發展的速度。
陰極保護
陰極保護技術是應用電化學原理,透過給被保護鋼筋加一負向電流,使它的電極電位負移,即使鋼筋表面氯離子已達到或超過使鋼筋脫鈍的臨界值,由於電化學腐蝕過程得到有效的抑制而使鋼筋不會發生鏽蝕。陰極保護的方式有犧牲陽極和外加電流兩種。
首先我們要了解鋼筋的鏽蝕原理及分類
1.鋼筋的鏽蝕條件: 鋼筋混凝土構件內鋼筋的鏽蝕需要三個條件:
(1)鋼筋表面鹼性鈍化膜破壞。正常情況下鋼筋是包裹在砼之內的,砼則由於水泥的水化反應造成其初始鹼性(含有一定Ca(OH)2)較強,正常情況下鋼筋在這種鹼性環境下不會發生氧化腐蝕。當PH值大於10時,鋼筋腐蝕的速度很慢,當PH值小於5時,其鏽蝕的速度就快。由此可見,只有當鋼筋混凝土構件內的鋼筋周圍鹼性鈍化膜因砼碳化或其它原因導致破壞後,才可能出現腐蝕。
(2)必須產生電位差,使鋼筋產生微電池腐蝕式大電池腐蝕。鋼筋腐蝕,是由於鋼筋表面不同部分之間產生電位差引起的,其作用和電池一樣,在鋼筋表面有微弱的電流流動。當在鋼筋表面構成了許多微小電池,其電化學反應,按下式進行: 陽極反應(活化區):FeFe2++2e 陰極反應區:2H20+O2+4e4(OH)- 綜合反應式就是:Fe2+2(OH)一Fe(OH)2 這就是鐵變成鐵鏽的過程。當構築物(或構件)處在離子條件差別很大的兩種環境中,或遭受雜散直流電影響時,一部分鋼筋(或一部分構築物)作為陽極,而另一部分作為陰極,這樣便構成大電池腐蝕。
(3)必須具備水和氧。水和氧是鋼筋腐蝕的必要條件(尤其是水),它們均參加鋼筋電化腐蝕的陽極反應過程。水分子能穿透任何肉眼可辯的裂縫。水還能起著電解質的作用,並溶餌氧和其它如氯等的有害離子,從而加速了腐蝕速度。另外在一定條件下氧還可以造成濃度電池腐蝕。最常見的例項就是水線腐蝕。【鋼筋混凝土結構的腐蝕及防護措施】鋼筋混凝土結構的腐蝕及防護措施。如浸在海水中的鋼筋混凝土結構,在水線附近鋼筋腐蝕最為嚴重,這是由於水線以上空氣中的含氧量較高,而水線以下(水中)含氧量突然降低,造成濃度電池腐蝕,使水線以下的部位鋼筋成為陽極而腐蝕。
2.鋼筋混凝土構件中鋼筋的鏽蝕的幾種情況:
(1)由於混凝土不密實或有裂縫存在造成鋼筋的腐蝕。混凝土密實度不良和構件上產生的裂縫,往往是造成鋼筋腐蝕的很重要原因。混凝土澆築中產生露筋、蜂窩、麻面等情況,都會加速鋼筋的鏽蝕。因為孔隙和裂縫(一般在0.2ram以上時)給水(汽)、氧和其他侵蝕性介質的滲透創造了有利條件。因此,鋼筋的電化學腐蝕和混凝土密實度、裂縫的寬度、保護層的厚度、空氣的溼度以及空氣中侵蝕性介質的含量,都有直接的關係。當混凝士密實度差和鋼筋保護層不足時,各種介質就容易到達鋼筋表面造成腐蝕。
(2)由於混凝土碳化和侵蝕性氣體、介質的侵入,造成鋼筋的腐蝕。空氣中的二氧化碳氣體,在混凝土表層中逐漸為氫氧化鈣的鹼性溶液所吸收,相互反應生成碳酸鈣,這種現象稱為混凝土的碳化,亦稱“中性化”。砼碳化生成的碳酸鈣很難溶解,其飽和溶液的PH 值為9,因此混凝土碳化的結果,就使PH值不斷下降,並不斷向內部深化。混凝土碳化對混凝土強度一般無直接影響。其危害主要在於為鋼筋腐蝕提供條件,而鋼筋鏽蝕體積將發生膨脹(體積比原來提高2.2倍),混凝土保護層將因此遭到剝落和損壞,從而降低鋼筋和混凝土的工作效能;尤其對於薄殼鋼筋混凝土結構和預應力高強度鋼絲構件等,會造成嚴重的結構損壞而且這種破壞往往是脆性的,具有隱藏、突然性等特點。
(3)由於混凝土內摻入氯鹽造成鋼筋的腐蝕。為提高混凝土早期強度或抗凍效能,過去人們往往在混凝土內摻入一定量的氯鹽,如氯化鈣、氯化鈉等。氯化鈣與水泥中的氫氧化鈣、矽酸三鈣、鋁酸三鈣結合,生成高水分子複合化合物,如氯矽酸鹽等,並提高了氫氧化鈣的溶解度。混凝土中,氯鹽對鋼筋的腐蝕多呈潰瘍狀,容易造成鋼筋的應力集中:因此它的危害性是比較大的。混凝土中氯離子主要來源於原材料、外加劑加海砂、海水或氯鹽高的水,以及摻加的用氯化鈣作為促凝劑,用氯化鈉作為防凍劑等,國內外已出現多起加氯鹽過量而引起的嚴重腐蝕事件。
(4)由於高強鋼筋中的應力腐蝕隨著預應力鋼筋混凝土結構的採用,出現了高強鋼筋中的一種特殊腐蝕形式,即“應力腐蝕”。一般在表面只有輕微損害或根本看不見損害,這種腐蝕尤為危險,因為它沒有任何預兆而可以發生突然破壞。一般認為:高強鋼筋在應力(拉應力)的作用下,導致鈍化膜的破壞,裂縫比較活化,並作為陽極而腐蝕。在電化學腐蝕過程中繼續擴大,同時由於鋼筋中具有很高的拉應力,和高強鋼筋的低變形效能。因此,腐蝕和應力共同作用,使裂縫迅速向深度發展,以致鋼筋在看不到明顯的腐蝕現象的情況下會突然斷裂。
(5)電流腐蝕工業用電中的直流電,當它洩漏到地下鋼筋混凝土結構中時,會造成鋼筋的腐蝕。在這種情況下,電流流入處相當於陰極區,電流流出處相當於陽極區。目前中國一些直流電解工廠、電氣化鐵路、直流電的載流裝置等的電流洩漏現象比較多,有時比較嚴重。這些雜散電流對鋼筋混凝土結構(如基礎、梁、柱等)鋼筋的腐蝕破壞時有所見。
鋼筋混凝土結構防護措施混凝土結構防腐蝕是系統工程,並不是說單純的鋼筋防腐,必須在勘察、規劃、設計、施工、使用等各個階段對所涉及的防腐問題進行細緻的瞭解、分析和處理,各個階段都應充分重視和充分合作,共同完成。混凝土結構防護措施可分為基本防護措施、混凝土表面塗覆防護措施和鋼筋防護措施。
混凝土的基本防護措施 混凝土的基本防護措施即是從設計、施工、製作等方面提高混凝土自身的防護效能。由於混凝土本身具有高鹼性,正確設計、施工的優質混凝土保護層本身具有長期防止環境介質滲透的功能,因此,儘可能提高混凝土本身對鋼筋的防護功能是預防鋼筋腐蝕的許多措施中最經濟合理、最有效的基本措施。這一類措施主要有以下幾方面:
(1)合理的結構設計 混凝土結構形式及細部構造應有利於防腐、檢測。如構件截面幾何形狀應簡單、平順,減少稜角、突變和應力集中;混凝土表面應有利於排水,不宜在接縫或止水處排水;特別注意構件應易於施工,儘可能在工場預製;結構形式應便於對關鍵部位進行檢測和設定檢測、維護和採取補充保護措施的通道;對處於腐蝕較嚴重部位和構件,應考慮其易於更換的可能性。 由於混凝土保護層厚度與發生腐蝕的時間成平方關係,適當增加混凝土保護層厚度,以延長侵蝕性介質滲透到鋼筋周圍達到破壞鈍化膜臨界值的時間。但保護層厚度不宜大於80mm,否則混凝土表面易出現由於混凝土收縮、溫度應力等所引起的混凝土表面裂縫。控制主筋的直徑不宜過大,原因是較粗的鋼筋提供較小的電阻,也就是提供了較大的腐蝕電流。更重要的是較粗的鋼筋會生成較多的腐蝕產物,膨脹的體積增大比較多,從而造成較高的拉應力。所以,當混凝土保護層厚度相同時,鋼筋越粗,鋼筋直徑對保護層厚度的比值越大,鋼筋開始腐蝕到開始使混凝土脹裂的時間也就越短。
(2)選擇優質原材料和最佳化混凝土配合比設計 選擇優質原材料和最佳化混凝土的配合比,以提高混凝土的抗蝕能力。如儘量減小水灰比提高混凝土的密實度,混凝土密實度高,孔隙率小,有利於提高混凝土的抗滲性,增強對侵蝕性介質的抗蝕能力;限制粗骨料的最大粒徑,減少粗骨料與水泥砂漿介面的不利影響;規定混凝土拌合物最低水泥用量(或最低膠凝材料用量),確保混凝土具有較高的鹼度;有抗凍要求時,加入合適量的引氣劑以提高混凝土的抗凍性;不得采用可能發生鹼-集料反應的活性骨料;嚴格限制砂、石、外加劑、拌和水等原材料中的氯離子含量,使混凝土拌合物中氯離子含量符合規定要求。
(3)採用高效能混凝土 高效能混凝土是指用常規材料、常規工藝,以較低水膠比、適當摻量的優質摻合料和較嚴格的質量控制製作的高耐久性,良好工作性及較高強度的混凝土。中交集團廣州四航工程技術研究院等單位開發的海工抗鹽汙染高效能混凝土,其抗氯離子滲透性比普通混凝土提高數倍,可顯著提高混凝土本身的護筋效能,從根本上提高混凝土的耐久性,從而延長結構物的安全使用壽命。目前,該項技術已成功應用於鹽田港、湛江港、洋山港、東海大橋、杭州灣大橋等多項使用年限要求50年甚至100年的大型海港工程和跨海大橋工程中。 3.2混凝土表面塗覆防護措施 除了採取措施提高混凝土本身的耐久性外,採用混凝土表面塗覆防護措施有效地將混凝土與周圍侵蝕性介質隔離開來或阻止有害介質的侵入,也是一種有效的防護措施。
混凝土表面塗層
該措施是在混凝土表面塗覆一層塗料,形成一層隔離層制止氯離子、氧、水等介質滲入混凝土,以延緩鋼筋腐蝕。
表面塗覆浸入型塗料
浸入型塗料是一種粘度很低的有機矽化合物液體,將它塗(或噴)於風乾的混凝土表面上,靠毛細孔的表面張力作用吸入(深約數毫米的混凝土表層中,它與孔壁的氫氧化鈣反應,以非極性基使毛細孔憎水化或者填充部分細孔,使孔細化。浸入型塗料不能在混凝土表面上成膜,不會形成隔離層,也不能充滿混凝土毛細孔隙,所以不會影響混凝土透氣性,透水蒸汽性,但是,它卻能顯著降低混凝土的吸水性,使水和只能溶解於水中才能被毛細管吸收作用吸進去的氯化物都難以吸進混凝土中,而混凝土中的水份卻可以化為水蒸汽自由蒸發出去,使混凝土保持乾燥,從而顯著地提高混凝土的護筋性。
鋼筋防護措施鍍層鋼筋和塗層鋼筋
鍍層鋼筋主要是鍍鋅鋼筋,利用鋅的電位比鐵低,對鋼筋施加陰極保護。塗層鋼筋是指在鋼筋表面製作塗層,隔離鋼筋與腐蝕介質的接觸。這種鋼筋是在嚴格控制的工廠流水線上,採用靜電噴塗工藝將塗層(目前使用較普遍的是環氧塗層)噴塗於表面處理過的預熱的鋼筋上,形成具有一層堅韌、不滲透、連續的絕緣層的鋼筋。所以,只要這種鋼筋在運輸、存放、加工、安裝和混凝土澆搗過程中能按規範嚴格保護,它是可以將鋼筋與周圍混凝土隔開,即使氯離子、氧氣等已大量侵入混凝土,它也能長期保護鋼筋使它免遭腐蝕。 鋼筋阻鏽劑混凝土拌合物中摻入適量阻鏽劑,可阻止或延緩金屬和電解質介面的電化學反應,從而阻止金屬腐蝕是預防惡劣環境中鋼筋腐蝕的一種有效的補充措施。但是它不能代替優質混凝土,也就是說摻加阻鏽劑不能降低對混凝土保護層的基本要求。按照作用機理,鋼筋阻鏽劑可分為陽極型、陰極型和混合型三種。加入鋼筋阻鏽劑既推遲了鋼筋開始生鏽的時間,又減緩了鋼筋腐蝕發展的速度。
陰極保護
陰極保護技術是應用電化學原理,透過給被保護鋼筋加一負向電流,使它的電極電位負移,即使鋼筋表面氯離子已達到或超過使鋼筋脫鈍的臨界值,由於電化學腐蝕過程得到有效的抑制而使鋼筋不會發生鏽蝕。陰極保護的方式有犧牲陽極和外加電流兩種。