矩陣的秩是線性代數中的一個概念。線上性代數中,一個矩陣A的列秩是A的線性獨立的縱列的極大數。通常表示為r(A),rk(A)或rankA。 類似地,行秩是A的線性無關的橫行的極大數目。通俗一點說,如果把矩陣看成一個個行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無關組中所含向量的個數。
方陣(行數、列數相等的矩陣)的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣A的秩。通常表示為r(A),rk(A)或。
m×n矩陣的秩最大為m和n中的較小者,表示為 min(m,n)。有儘可能大的秩的矩陣被稱為有滿秩;類似的,否則矩陣是秩不足(或稱為“欠秩”)的。
設A是一組向量,定義A的極大無關組中向量的個數為A的秩。
定義1. 在m*n矩陣A中,任意決定k行和k列交叉點上的元素構成A的一個k階子矩陣,此子矩陣的行列式,稱為A的一個k階子式。
例如,在階梯形矩陣中,選定1,3行和3,4列,它們交叉點上的元素所組成的2階子矩陣的行列式就是矩陣A的一個2階子式。
定義2. A=(aij)m×n的不為零的子式的最大階數稱為矩陣A的秩,記作rA,或rankA或R(A)。
特別規定零矩陣的秩為零。
顯然rA≤min(m,n) 易得:
若A中至少有一個r階子式不等於零,且在r<min(m,n)時,A中所有的r+1階子式全為零,則A的秩為r。
由定義直接可得n階可逆矩陣的秩為n,通常又將可逆矩陣稱為滿秩矩陣, det(A)≠0;不滿秩矩陣就是奇異矩陣,det(A)=0。
由行列式的性質1(1.5[4])知,矩陣A的轉置AT的秩與A的秩是一樣的。
矩陣的秩
引理 設矩陣A=(aij)sxn的列秩等於A的列數n,則A的列秩,秩都等於n。
定理 矩陣的乘積的秩Rab<=min{Ra,Rb};
當r(A)<=n-2時,最高階非零子式的階數<=n-2,任何n-1階子式均為零,而伴隨陣中的各元素就是n-1階子式再加上個正負號,所以伴隨陣為0矩陣。
當r(A)<=n-1時,最高階非零子式的階數<=n-1,所以n-1階子式有可能不為零,所以伴隨陣有可能非零(等號成立時伴隨陣必為非零)。
矩陣的秩是線性代數中的一個概念。線上性代數中,一個矩陣A的列秩是A的線性獨立的縱列的極大數。通常表示為r(A),rk(A)或rankA。 類似地,行秩是A的線性無關的橫行的極大數目。通俗一點說,如果把矩陣看成一個個行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無關組中所含向量的個數。
方陣(行數、列數相等的矩陣)的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣A的秩。通常表示為r(A),rk(A)或。
m×n矩陣的秩最大為m和n中的較小者,表示為 min(m,n)。有儘可能大的秩的矩陣被稱為有滿秩;類似的,否則矩陣是秩不足(或稱為“欠秩”)的。
設A是一組向量,定義A的極大無關組中向量的個數為A的秩。
定義1. 在m*n矩陣A中,任意決定k行和k列交叉點上的元素構成A的一個k階子矩陣,此子矩陣的行列式,稱為A的一個k階子式。
例如,在階梯形矩陣中,選定1,3行和3,4列,它們交叉點上的元素所組成的2階子矩陣的行列式就是矩陣A的一個2階子式。
定義2. A=(aij)m×n的不為零的子式的最大階數稱為矩陣A的秩,記作rA,或rankA或R(A)。
特別規定零矩陣的秩為零。
顯然rA≤min(m,n) 易得:
若A中至少有一個r階子式不等於零,且在r<min(m,n)時,A中所有的r+1階子式全為零,則A的秩為r。
由定義直接可得n階可逆矩陣的秩為n,通常又將可逆矩陣稱為滿秩矩陣, det(A)≠0;不滿秩矩陣就是奇異矩陣,det(A)=0。
由行列式的性質1(1.5[4])知,矩陣A的轉置AT的秩與A的秩是一樣的。
矩陣的秩
引理 設矩陣A=(aij)sxn的列秩等於A的列數n,則A的列秩,秩都等於n。
定理 矩陣的乘積的秩Rab<=min{Ra,Rb};
當r(A)<=n-2時,最高階非零子式的階數<=n-2,任何n-1階子式均為零,而伴隨陣中的各元素就是n-1階子式再加上個正負號,所以伴隨陣為0矩陣。
當r(A)<=n-1時,最高階非零子式的階數<=n-1,所以n-1階子式有可能不為零,所以伴隨陣有可能非零(等號成立時伴隨陣必為非零)。