回覆列表
  • 1 # 姜浪花

    視界的形成與質量無關,而是因為強大無比的電場或磁場!只有電荷光子都解體同化為單一閉環電磁糾纏統一體後方能在電磁強度上形成數量級的巨大飛躍。

  • 2 # 天高兮雲淡

    當引力大到一定程度,密密麻麻的中子堆積在一起也無法抵抗,核力中的強相互作用力也抵抗不了引力的蹋縮,中子分解了,基本粒子都被壓碎,一切物質都被壓碎,沒有任何物質可以抵抗壓力,那麼將一直壓縮下去。

  • 3 # 學習中成長實踐中進步

    黑洞就是中心的一個密度無限大、時空曲率無限高、體積無限小的奇點和周圍一部分空空如也的天區,這個天區範圍之內不可見。依據阿爾伯特-愛因斯坦的相對論,當一顆垂死恆星崩潰,它將聚整合一點,這裡將成為黑洞,吞噬鄰近宇宙區域的所有光線和任何物質。

    黑洞的產生過程類似於中子星的產生過程:某一個恆星在準備滅亡,核心在自身重力的作用下迅速地收縮,塌陷,發生強力爆炸。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想象的物質。由於高質量而產生的力量,使得任何靠近它的物體都會被它吸進去。黑洞開始吞噬恆星的外殼,但黑洞並不能吞噬如此多的物質,黑洞會釋放一部分物質,射出兩道純能量——γ射線。

    也可以簡單理解:通常恆星最初只含氫元素,恆星內部的氫原子核時刻相互碰撞,發生聚變。由於恆星質量很大,聚變產生的能量與

    恆星萬有引力抗衡,以維持恆星結構的穩定。由於氫原子核的聚變產生新的元素——氦元素,接著,氦原子也參與聚變,改變結構,生成鋰元素。如此類推,按照元素週期表的順序,會依次有鈹元素、硼元素、碳元素、氮元素等生成,直至鐵元素生成,該恆星便會坍塌。這是由於鐵元素相當穩定,參與聚變時不釋放能量,而鐵元素存在於恆星內部,導致恆星內部不具有足夠的能量與質量巨大的恆星的萬有引力抗衡,從而引發恆星坍塌,最終形成黑洞。說它“黑”,是因為它的密度無窮大,從而產生的引力使得它周圍的光都無法逃逸。跟中子星一樣,黑洞也是由質量大於太陽質量好幾倍以上的恆星演化而來的。

    當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,物質將不可阻擋地向著中心點進軍,直到最後形成體積接近無限小、密度幾乎無限大的星體。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),質量導致的時空扭曲就使得即使光也無法向外射出——“黑洞”就誕生了。

    吸積

    黑洞拉伸,撕裂併吞噬恆星

    黑洞通常是因為它們聚攏周圍的氣體產生輻射而被發現的,這一過程被稱為吸積。高溫氣體輻射熱能的效率會嚴重影響吸積流的幾何與動力學特性。已觀測到了輻射效率較高的薄盤以及輻射效率較低的厚盤。當吸積氣體接近中央黑洞時,它們產生的輻射對黑洞的自轉以及視界的存在極為敏感。對吸積黑洞光度和光譜的分析為旋轉黑洞和視界的存在提供了強有力的證據。數值模擬也顯示吸積黑洞經常出現相對論噴流也部分是由黑洞的自轉所驅動的。

    通常天體物理學家會用“吸積”這個詞來描述物質向中央引力體或者是中央延展物質系統的流動。吸積是天體物理中最普遍的過程之一,而且也正是因為吸積才形成了我們周圍許多常見的結構。在宇宙早期,當氣體朝由暗物質造成的引力勢阱中心流動時形成了星系。即使到了今天,恆星依然是由氣體雲在其自身引力作用下坍縮碎裂,進而透過吸積周圍氣體而形成的。行星(包括地球)也是在新形成的恆星周圍透過氣體和岩石的聚集而形成的。當中央天體是一個黑洞時,吸積就會展現出它最為壯觀的一面。黑洞除了吸積物質之外,還透過霍金蒸發過程向外輻射粒子

    中子星,是恆星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚變反應中耗盡,當它們最終轉變成鐵元素時便無法從核聚變中獲得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能導致外殼的動能轉化為熱能向外爆發產生超新星爆炸,或者根據恆星質量的不同,恆星的內部區域被壓縮成白矮星、中子星以至黑洞。白矮星被壓縮成中子星的過程中恆星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上頭一立方厘米的物質便可重達十億噸,且旋轉速度極快,而由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各種輻射可能會以一明一滅的方式傳到地球,有如人眨眼,故又稱作脈衝星。

    一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方厘米

    克至

    克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但質量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星會繼續發生引力坍縮,則無可避免的將產生黑洞。

    由於中子星保留了母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致了轉速迅速的增加,產生非常高的自轉速率,週期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的

    倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的最大速度將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到了中子星,他撞擊到中子星表面的能量將相當於二億噸核爆的威力(四倍於全球最巨大的核彈大沙皇的威力),當然這僅僅是假設,真要是這樣的話,這個人在越來越接近中子星的時候,會被強大的潮汐力扯碎。

    宇宙的不斷膨脹

    一般認為,宇宙產生於140億年前一次大爆炸中。大爆炸後30億年,最初的物質漣漪出現。大爆炸後20億~30億年,類星體逐漸形成。大爆炸後90億年,太陽誕生。38億年前地球上的生命開始逐漸演化。

    大爆炸散發的物質在太空中漂游,由許多恆星組成的巨大的星系就是由這些物質構成的,我們的太陽就是這無數恆星中的一顆。原本人們想象宇宙會因引力而不再膨脹,但是,科學家已發現宇宙中有一種 “暗能量”會產生一種斥力而加速宇宙的膨脹。

    大爆炸後的膨脹過程是一種引力和斥力之爭,爆炸產生的動力是一種斥力,它使宇宙中的天體不斷遠離;天體間又存在萬有引力,它會阻止天體遠離,甚至力圖使其互相靠近。引力的大小與天體的質量有關,因而大爆炸後宇宙的最終歸宿是不斷膨脹,還是最終會停止膨脹並反過來收縮變小,這完全取決於宇宙中物質密度的大小。

    理論上存在某種臨界密度。如果宇宙中物質的平均密度小於臨界密度,宇宙就會一直膨脹下去,稱為“開宇宙”;要是物質的平均密度大於臨界密度,膨脹過程遲早會停下來,並隨之出現收縮,稱為“閉宇宙”。

    問題似乎變得很簡單,但實則不然。理論計算得出的臨界密度為5×8^-30克/立方厘米。但要測定宇宙中物質平均密度就不那麼容易了。星系間存在廣袤的星系間空間,平均密度就只有2×10^-31克/立方厘米,遠遠低於上述臨界密度。

    然而,種種證據表明,宇宙中還存在著尚未觀測到的所謂的暗物質,其數量可能遠超過可見物質,這給平均密度的測定帶來了很大的不確定因素。因此,宇宙的平均密度是否真的小於臨界密度仍是一個有爭議的問題。不過,就目前來看,開宇宙的可能性大一些,因為宇宙中還有更多的暗能量。

    恆星演化到晚期,會把一部分物質(氣體)丟擲星際空間,而這些氣體又可用來形成下一代恆星。這一過程中氣體可能越來越少(並未確定這種過程會減少這種氣體。)。以致於不能再產生新的恆星。10^14年後,所有恆星都會失去光輝,宇宙也就變暗。同時,恆星還會因相互作用不斷從星系逸出,星系則因損失能量而收縮,結果使中心部分生成黑洞,並透過吞食經過其附近的恆星而長大。(根據質能守恆定律,形成恆星的氣體並不會減少而是轉換成其他形態。所以新的恆星可能會一直產生.)

    10^17~10^18年後,對於一個星系來說只剩下黑洞和一些零星分佈的死亡了的恆星,這時,組成恆星的質子不再穩定。10^32年後,質子開始衰變為光子和各種輕子。10^71年後,這個衰變過程進行完畢,宇宙中只剩下光子、輕子和一些巨大的黑洞。

    10^108年後,透過蒸發作用,有能量的粒子會從巨大的黑洞中逃逸出。宇宙將歸於一片黑暗。這也許就是開宇宙“末日”到來時的景象,但它仍然在不斷地、緩慢地膨脹著。(但質子是否會衰變還未得到結論,因此根據質能守恆定律。宇宙中的質能會不停的轉換。)

    閉宇宙的結局又會怎樣呢?閉宇宙中,膨脹過程結束時間的早晚取決於宇宙平均密度的大小。如果假設平均密度是臨界密度的2倍,那麼根據一種簡單的理論模型,經過400~500億年後,引力開始佔上風,膨脹即告停止,而接下來宇宙便開始收縮。

    以後的情況差不多就像一部宇宙影片放映結束後再倒放一樣,大爆炸後宇宙中所發生的一切重大變化將會反演。收縮幾百億年後,原來星系遠離地球的退行運動將代之以向地球接近的運動。再過幾十億年,宇宙背景輻射會上升到400開,並繼續上升,於是,宇宙變得非常熾熱而又稠密。 在坍縮過程中,星系會彼此併合,恆星間碰撞頻繁。

    這些結局只考慮到引力作用。實際上可能有更多其他的複雜因素。

    2002年,據中國網[3] 報道,美國普林斯頓大學的保羅·斯坦哈特教授與英國劍橋大學的尼爾·圖羅克教授,發表了關於“宇宙無始無終”的新論斷。他們認為,宇宙既沒有“誕生”之日,也沒有終結之時,而就是在一次又一次的大爆炸中進行運動,迴圈往復,以至無窮的。 至於“宇宙無始無終”的新論是否正確,報導中認為,過幾年國際天文學界可望對此做出驗證。但直到2013年,迴圈宇宙的觀點仍存在爭議。

    加速膨脹

    一個科學家小組使用美國宇航局斯皮策空間望遠鏡進行的最新測量顯示,宇宙的膨脹速度約為46英里(74公里)每秒·每百萬秒差距(更精確的數值為:74.3 ± 2.1 (km/s)/Mpc)。

    浩瀚宇宙為天文學家的觀測和研究提供了無限可能。誰能想象,璀璨星空正在不斷遠離我們,終有一天會在我們眼中消失?然而,諾貝爾獎獲得者布萊恩·施密特指出,這就是正在發生的事實——物質與物質之間的空間正在加大。“這意味者大概百億年後的未來,絢爛的星空用肉眼再難觀測到,黑夜將一片空寂,大概1000億年之後,除了我們所在的銀河系,所有星系都將相距遙遠各自飄離,人們看到的宇宙將空無一物。”

    美國科學家日前表示,基於相關發現中所獲資料的計算產生了一個壞訊息,即宇宙可能會在數百億年後面臨一場災難。“如果你利用我們現在知道的所有物理學(知識)直接計算,這是個壞訊息,”美國費米國家加速器實驗室理論物理學家約瑟夫·利肯日前在美國科學促進會2013年年會上對媒體表示。美國科學促進會成立於1848年,是世界最大的科學協會之一,《科學》雜誌也由其出版。利肯說,我們生活的宇宙並不穩定,科學界一直希望推算宇宙的長期穩定性,但這需要獲得希格斯玻色子和其他亞原子粒子的精確質量,最近的發現提供了相關資料,在此基礎上進行的計算顯示數百億年後將有一場災難——“一個被認為會成為‘替代宇宙’的小空泡將在某處出現,隨後逐漸膨脹並最終將我們破壞”。他認為,小空泡將以光速膨脹

  • 4 # 講科學堂

    黑洞之所以被稱為“黑”洞,是因為它具有強大的引力,這使得它的逃逸速度大於了光速,這也導致了光線也無法 逃出它的引力場。這使得它像熱力學裡面的理想“黑體”一樣,故而得名黑洞。

    圖:黑洞

    光線無法逃出黑洞介面被稱為“視界”,這個視界的半徑可由史瓦西半徑公式計算出來:

    從上式可見,任何質量的物體都能成為黑洞,例如將地球的質量帶入,可得地球被壓縮成黑洞的史瓦西半徑為8.87毫米,太陽為2.95千米。

    中子星的質量不會大於3.2個太陽質量(大於這個值就會坍縮成一個黑洞),一顆典型的中子星質量在太陽質量的1.35~2.1倍之間,半徑則在10~20千米之間(質量越大半徑越小),將它的質量帶入史瓦西半徑公式,你會發現中子星的史瓦西半徑小於星體的半徑,即史瓦西半徑在中子星的內部。

    中子星表面的逃逸速度大約在1萬~15萬千米/秒之間,也就是可以達到光速的一半。所以,光是可以從中子星上逃出來的。這也決定了它可被直接觀測,所以它不可能是黑洞的核心。

    圖:中子星結構

    事實上,中子星也被稱為脈衝星,是因為它會發出無線電脈衝訊號(快速旋轉掃過地球)。這也是科學家能夠用射電望遠鏡直接觀測到它的原因。

    圖:中子星

  • 5 # 小寶貝的大可愛

    首先,黑洞的產生過程類似於中子星的產生過程;恆星的核心在自身重量的作用下迅速地收縮,發生強力爆炸。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星球。。。黑洞的產生過程就類似與中子星的產生過程,至於是否存在中子星,我認為是有很大可能的,然而無法證實啊

  • 中秋節和大豐收的關聯?
  • 給孩子讀繪本需要講究方法嗎?如何閱讀才能產生良好效果?