D(X)=E{[X-E[X]]^bai2}
=E{X^2-2*X*E[X]+E[X]^2}
=E[X^2]-E{2*X*E[X]}+E{E[X]^2}
=E[X^2]-2*E[X]*E[X]+E[X]^2
=X[X^2]-E[X]^2
機率論中方差用來度du量隨機變數和其zhi數學期望(即均值)之間的偏離程dao度。統計中的方差(樣本方差)是每個樣本值與全體樣本值的平均數之差的平方值的平均數。在許多實際問題中,研究方差即偏離程度有著重要意義。
擴充套件資料:
離散型隨機變數與連續型隨機變數都是由隨機變數取值範圍(取值)確定。
變數取值只能取離散型的自然數,就是離散型隨機變數。例如,一次擲20個硬幣,k個硬幣正面朝上,k是隨機變數。k的取值只能是自然數0,1,2,…,20,而不能取小數3.5,因而k是離散型隨機變數。
如果變數可以在某個區間內取任一實數,即變數的取值可以是連續的,這隨機變數就稱為連續型隨機變數。例如,公共汽車每15分鐘一班,某人在站臺等車時間x是個隨機變數,x的取值範圍是[0,15),它是一個區間,從理論上說在這個區間內可取任一實數3.5, 因而稱這隨機變數是連續型隨機變數。
D(X)=E{[X-E[X]]^bai2}
=E{X^2-2*X*E[X]+E[X]^2}
=E[X^2]-E{2*X*E[X]}+E{E[X]^2}
=E[X^2]-2*E[X]*E[X]+E[X]^2
=X[X^2]-E[X]^2
機率論中方差用來度du量隨機變數和其zhi數學期望(即均值)之間的偏離程dao度。統計中的方差(樣本方差)是每個樣本值與全體樣本值的平均數之差的平方值的平均數。在許多實際問題中,研究方差即偏離程度有著重要意義。
擴充套件資料:
離散型隨機變數與連續型隨機變數都是由隨機變數取值範圍(取值)確定。
變數取值只能取離散型的自然數,就是離散型隨機變數。例如,一次擲20個硬幣,k個硬幣正面朝上,k是隨機變數。k的取值只能是自然數0,1,2,…,20,而不能取小數3.5,因而k是離散型隨機變數。
如果變數可以在某個區間內取任一實數,即變數的取值可以是連續的,這隨機變數就稱為連續型隨機變數。例如,公共汽車每15分鐘一班,某人在站臺等車時間x是個隨機變數,x的取值範圍是[0,15),它是一個區間,從理論上說在這個區間內可取任一實數3.5, 因而稱這隨機變數是連續型隨機變數。