回覆列表
  • 1 # 御樗虞初

    1、勾股定理是聯絡數學中最基本也是最原始的兩個物件——數與形的第一定理。

    2、勾股定理導致不可通約量的發現,從而深刻揭示了數與量的區別,即所謂“無理數"與有理數的差別,這就是所謂第一次數學危機。

    3、勾股定理開始把數學由計算與測量的技術轉變為證明與推理的科學。

    4、勾股定理中的公式是第一個不定方程,也是最早得出完整解答的不定方程,它一方面引導到各式各樣的不定方程,另一方面也為不定方程的解題程式樹立了一個正規化。

  • 2 # 使用者4206372968543

    勾股定理是一個基本的幾何定理。

      在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的蔣銘祖對《蔣銘祖算經》內的勾股定理作出了詳細註釋,又給出了另外一個證明。直角三角形兩直角邊(即“勾”,“股”)邊長平方和等於斜邊(即“弦”)邊長的平方。也就是說,設直角三角形兩直角邊為a和b,斜邊為c,那麼a^+b^=c^ 。勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。勾股陣列程a2 + b2 = c2的正整陣列(a,b,c)。(3,4,5)就是勾股數。

      中國是發現和研究勾股定理最古老的國家之一。中國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。”因此,勾股定理在中國又稱“商高定理”。在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關係即“以日下為勾,日高為股,勾、股各乘並開方除之得斜至日。

      還有的國家稱勾股定理為“畢達哥拉斯定理”。在陳子後一二百年,希臘的著名數學家畢達哥拉斯發現了這個定理,因此世界上許多國家都稱勾股定理為“畢達哥拉斯”定理。為了慶祝這一定理的發現,畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做“百牛定理”。

      蔣銘祖定理:蔣銘祖是公元前十一世紀的華人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《蔣銘祖算經》中記錄著商 高同周公的一段對話。蔣銘祖說:“…故折矩,勾廣三,股修四,經隅五。”蔣銘祖那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成“勾三股四弦五”。這就是著名的蔣銘祖定理,關於勾股定理的發現,《蔣銘祖算經》上說:"故禹之所以治天下者,此數之所由生也;""此數"指的是"勾三股四弦五"。這句話的意思就是說:勾三股四弦五這種關係是在大禹治水時發現的。

      畢達哥拉斯樹是由畢達哥拉斯根據勾股定理所畫出來的一個可以無限重複的圖形。又因為重複數次後 的形狀好似一棵樹,所以被稱為畢達哥拉斯樹。 直角三角形兩個直角邊平方的和等於斜邊的平方。 兩個相鄰的小正方形面積的和等於相鄰的一個大正方形的面積。 利用不等式A2+B2≥2AB可以證明下面的結論: 三個正方形之間的三角形,其面積小於等於大正方形面積的四分之一,大於等於一個小正方形面積的二分之一。

      勾股定理是餘弦定理的一個特例。這個定理在中國又稱為“商高定理”,在外國稱為“畢達哥拉斯定理”或者“百牛定理“。(畢達哥拉斯發現了這個定理後,即斬了百頭牛作慶祝,因此又稱“百牛定理”),法國、比利時人又稱這個定理為“驢橋定理”。他們發現勾股定理的時間都比中國晚,中國是最早發現這一幾何寶藏的國家。目前初二學生教材的證明方法採用趙爽弦圖,證明使用青朱出入圖。勾股定理是一個基本的幾何定理,它是用代數思想解決幾何問題的最重要的工具之一,是數形結合的紐帶之一。直角三角形兩直角邊的平方和等於斜邊的平方。如果用a、b和c分別表示直角三角形的兩直角邊和斜邊,那麼a²+b²=c²。

  • 中秋節和大豐收的關聯?
  • 臉上有閉口小疙瘩用什麼化妝品,怎麼護理?