-
1 # 山有木兮0620
-
2 # 使用者9522830687733
sin角計算公式:sinα=tanα×cosα,即sinα/cosα=tanα。在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。古代說的“勾三股四弦五”中的“弦”,就是直角三角形中的斜邊,“勾”、“股”是直角三角形的兩條直角邊
-
3 # Alaric已被使用
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
二、降冪公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推導公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、兩角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化積
1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、積化和差
1、sinαsinβ = [cos(α-β)-cos(α+β)] /2
2、sinαcosβ = [sin(α+β)+sin(α-β)]/2
3、cosαsinβ = [sin(α+β)-sin(α-β)]/2
七、誘導公式
1、(-α) = -sinα、cos(-α) = cosα
2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα
3、3cos(π/2+α) = -sinα
4、(π-α) = sinα、cos(π-α) = -cosα
5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、銳角三角函式公式
1、sin α=∠α的對邊 / 斜邊
2、α=∠α的鄰邊 / 斜邊
3、tan α=∠α的對邊 / ∠α的鄰邊
4、cot α=∠α的鄰邊 / ∠α的對邊
-
4 # 使用者269249644
sin角計算公式:sinα=tanα×cosα,即sinα/cosα=tanα。在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。古代說的“勾三股四弦五”中的“弦”,就是直角三角形中的斜邊,“勾”、“股”是直角三角形的兩條直角邊
-
5 # 使用者5101093285433
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
二、降冪公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推導公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、兩角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化積
1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、積化和差
1、sinαsinβ = [cos(α-β)-cos(α+β)] /2
2、sinαcosβ = [sin(α+β)+sin(α-β)]/2
3、cosαsinβ = [sin(α+β)-sin(α-β)]/2
七、誘導公式
1、(-α) = -sinα、cos(-α) = cosα
2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα
3、3cos(π/2+α) = -sinα
4、(π-α) = sinα、cos(π-α) = -cosα
5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、銳角三角函式公式
1、sin α=∠α的對邊 / 斜邊
2、α=∠α的鄰邊 / 斜邊
3、tan α=∠α的對邊 / ∠α的鄰邊
4、cot α=∠α的鄰邊 / ∠α的對邊
-
6 # 使用者5151271440512
三角函式定義
以角度θ為自變數,在直角座標系中畫一個半徑為1的圓(單位圓),然後角度的一邊與X軸重合,頂點放在圓心處,另一邊作為射線,必須與單位圓相交於一點。這個點的座標是(x,y)。
sin(θ)= y;
cos(θ)= x;
tan(θ)= y/x;
三角函式公式大全
兩角求和公式
sin(A+B)= sinAcosB+cosasib
sin(A-B)= sinAcosB-cosasib
cos(A+B)= CoSACoB-SinAb
cos(A-B)= cosAcosB+sinab
tan(A+B)=(TanA+TanB)/(1-TanTanB)
tan(A-B)=(TanA-TanB)/(1+TanTanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(CoTacoTB+1)/(CoTB-CoTa)
雙角度公式
tan 2a = 2 tan/(1-tan A)
Sin2A = 2 Sina CoSA
Cos2A = Cos^2 A - Sin A
=2Cos A—1
=1—2sin^2 A
三角公式
sin3A = 3 sinA-4(SinA);
cos3A = 4(cosA) -3cosA
tan 3a = tan a tan(π/3+a)tan(π/3-a)
半形公式
sin(A/2) = √{(1 - cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1 - cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}?
tan(A/2)=(1-CoSA)/SinA = SinA/(1+CoSA)
和差積
sin(a)+sin(b)= 2 sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b)= 2 cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b)= 2 cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b)=-2 sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
積和與差
sin(a)sin(b)=-1/2 *[cos(a+b)-cos(a-b)]
cos(a)cos(b)= 1/2 *[cos(a+b)+cos(a-b)]
sin(a)cos(b)= 1/2 *[sin(a+b)+sin(a-b)]
cos(a)sin(b)= 1/2 *[sin(a+b)-sin(a-b)]
歸納公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
三角函式的普適公式
sin(a)=[2tan(a/2)]/{ 1+[tan(a/2)]
cos(a)= {1-[tan(a/2)]^2}/{ 1+[tan(a/2)]}
tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}
其他公式
asin(a)+bcos(a)=[√(a+b)]* sin(a+c)[其中tan(c)=b/a]
asin(a)-bcos(a)=[√(a+b)]* cos(a-c)[其中tan(c)=a/b]
1+sin(a)=[sin(a/2)+cos(a/2)];
1-sin(a)=[sin(a/2)-cos(a/2)];
其他非加重三角函式
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
雙曲函式
辛赫(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式1:
設α為任意角度,同一端邊相同的三角函式的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式2:
設α為任意角度,π+α的三角函式值與α的三角函式值的關係:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
等式3:
任意角度α和-α的三角函式值之間的關係;
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
等式4:
π-α和α的三角函式值之間的關係可以用公式2和公式3得到:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式5:
2π-α和α的三角函式值之間的關係可以透過使用公式-和公式3獲得:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
等式6:
π/2 α和3π/2 α與α的三角函式值的關係;
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)=餘α
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)=餘α
cot(3π/2-α)= tanα
(以上k∈Z)
我花了很長時間才輸入這個物理常用的公式,希望對大家有用
a sin(ωt+θ)+B sin(ωt+φ)=
√{(A+B+2 abcos(θ-φ)} } sin {ωt+arc sin[(A sinθ+B sinφ)/√{ A+B;+2 BCOS(θ-φ)} }
回覆列表
正弦二倍角公式
公式sin2a=2sinacosa
推導過程sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa2