回覆列表
  • 1 # 機器之心Pro

    學習是一種理性的投資,每當花費十幾個小時讀完一本書,你就能領略到前人數年積累的經驗。

    機器之心之前整理過Swinburne 科技大學的 Jason Brownlee 博士推薦的閱讀數目,適用任何階段的學習者參考。注意這部分推薦的都是英文資料(有的書有中文版),中文資料後面有時間整理補充。

    最流行機器學習科普圖書

    以下圖書適用於大多數讀者。它們點到了機器學習和資料科學的精華之處,卻沒有使用枯燥的理論或應用細節。這份書單也包括了一些流行的「統計思想」科普書籍。

    The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

    地址:http://www.amazon.com/dp/0465065708?tag=inspiredalgor-20

    Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die

    地址:http://www.amazon.com/dp/1119145678?tag=inspiredalgor-20

    The Signal and the Noise: Why So Many Predictions Fail–but Some Don"t

    地址:http://www.amazon.com/dp/0143125087?tag=inspiredalgor-20

    Naked Statistics: Stripping the Dread from the Data

    地址:http://www.amazon.com/dp/039334777X?tag=inspiredalgor-20

    The Drunkard"s Walk: How Randomness Rules Our Lives

    地址:http://www.amazon.com/dp/0307275175?tag=inspiredalgor-20

    其中最值得推薦的一本是:《The Signal and the Noise》。

    適用於機器學習初學者的書籍

    以下列出最適用於初學者的書籍。希望入門的讀者同時也需要參考科普圖書(上一條)以及行業應用圖書(下一條)。

    Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

    地址:http://www.amazon.com/dp/1449361323?tag=inspiredalgor-20

    Data Smart: Using Data Science to Transform Information into Insight

    地址:http://www.amazon.com/dp/111866146X?tag=inspiredalgor-20

    Data Mining: Practical Machine Learning Tools and Techniques

    地址:http://www.amazon.com/dp/0128042915?tag=inspiredalgor-20

    Doing Data Science: Straight Talk from the Frontline

    地址:http://www.amazon.com/dp/1449358659?tag=inspiredalgor-20

    在這其中最重要的一本是:《Data Mining: Practical Machine Learning Tools and Techniques》。

    機器學習入門書籍——高階

    以下是適用於希望入門機器學習的本科學生和開發者的書籍,內容包含了機器學習的很多話題,注重如何解決問題,而不是介紹理論。

    Machine Learning for Hackers: Case Studies and Algorithms to Get You Started

    地址:http://www.amazon.com/dp/B007A0BNP4?tag=inspiredalgor-20

    Machine Learning in Action

    地址:http://www.amazon.com/dp/1617290181?tag=inspiredalgor-20

    Programming Collective Intelligence: Building Smart Web 2.0 Applications

    地址:http://www.amazon.com/dp/0596529325?tag=inspiredalgor-20

    An Introduction to Statistical Learning: with Applications in R

    地址:http://www.amazon.com/dp/1461471370?tag=inspiredalgor-20

    Applied Predictive Modeling

    地址:http://www.amazon.com/dp/1461468485?tag=inspiredalgor-20

    其中最值得推薦的一本是:《An Introduction to Statistical Learning: with Applications in R》

    機器學習教材

    以下列出了機器學習領域目前最流行的教科書。它們會在研究生課程中出現,包含方法與理論的解讀。

    The Elements of Statistical Learning: Data Mining, Inference, and Prediction

    地址:http://www.amazon.com/dp/0387848576?tag=inspiredalgor-20

    Pattern Recognition and Machine Learning

    地址:http://www.amazon.com/dp/0387310738?tag=inspiredalgor-20

    Machine Learning: A Probabilistic Perspective

    地址:http://www.amazon.com/dp/0262018020?tag=inspiredalgor-20

    Learning From Data

    地址:http://www.amazon.com/dp/B00YDJC98K?tag=inspiredalgor-20

    Machine Learning

    地址:http://www.amazon.com/dp/0070428077?tag=inspiredalgor-20

    Machine Learning: The Art and Science of Algorithms that Make Sense of Data

    地址:http://www.amazon.com/dp/1107422221?tag=inspiredalgor-20

    Foundations of Machine Learning

    地址:http://www.amazon.com/dp/026201825X?tag=inspiredalgor-20

    其中的重點是:《The Elements of Statistical Learning: Data Mining, Inference, and Prediction》

    機器學習圖書——按主題分

    有關 R 語言在機器學習中如何應用的圖書。

    The Elements of Statistical Learning: Data Mining, Inference, and Prediction

    地址:http://www.amazon.com/dp/0387848576?tag=inspiredalgor-20

    Pattern Recognition and Machine Learning

    地址:http://www.amazon.com/dp/0387310738?tag=inspiredalgor-20

    Machine Learning: A Probabilistic Perspective

    地址:http://www.amazon.com/dp/0262018020?tag=inspiredalgor-20

    Learning From Data

    地址:http://www.amazon.com/dp/B00YDJC98K?tag=inspiredalgor-20

    Machine Learning

    地址:http://www.amazon.com/dp/0070428077?tag=inspiredalgor-20

    Machine Learning: The Art and Science of Algorithms that Make Sense of Data

    地址:http://www.amazon.com/dp/1107422221?tag=inspiredalgor-20

    Foundations of Machine Learning

    地址:http://www.amazon.com/dp/026201825X?tag=inspiredalgor-20

    這方面的首選圖書是:《The Elements of Statistical Learning: Data Mining, Inference, and Prediction》。

    Python 機器學習

    以下列出 Python 機器學習熱門書籍

    Python Machine Learning

    地址:http://www.amazon.com/dp/1783555130?tag=inspiredalgor-20

    Data Science from Scratch: First Principles with Python

    地址:http://www.amazon.com/dp/149190142X?tag=inspiredalgor-20

    Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

    地址:http://www.amazon.com/dp/1491962291?tag=inspiredalgor-20

    Introduction to Machine Learning with Python: A Guide for Data Scientists

    地址:http://www.amazon.com/dp/1449369413?tag=inspiredalgor-20

    Vital Introduction to Machine Learning with Python: Best Practices to Improve and Optimize Machine Learning Systems and Algorithms

    地址:http://www.amazon.com/dp/B01N4FUDSE?tag=inspiredalgor-20

    Machine Learning in Python: Essential Techniques for Predictive Analysis

    地址:http://www.amazon.com/dp/1118961749?tag=inspiredalgor-20

    Python Data Science Handbook: Essential Tools for Working with Data

    地址:http://www.amazon.com/dp/1491912057?tag=inspiredalgor-20

    Introducing Data Science: Big Data, Machine Learning, and more, using Python tools 地址:http://www.amazon.com/dp/1633430030?tag=inspiredalgor-20

    Real-World Machine Learning

    地址:http://www.amazon.com/dp/1617291927?tag=inspiredalgor-20

    最值得注意的當然是《Python 機器學習》了。

    深度學習

    注意:深度學習的圖書目前還比較稀缺,以下這份列表只能保證數量,而不是質量。

    Deep Learning

    地址:http://www.amazon.com/dp/0262035618?tag=inspiredalgor-20

    Deep Learning: A Practitioner"s Approach

    地址:http://www.amazon.com/dp/1491914254?tag=inspiredalgor-20

    Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms

    地址:http://www.amazon.com/dp/1491925612?tag=inspiredalgor-20

    Learning TensorFlow: A guide to building deep learning systems

    地址:http://www.amazon.com/dp/1491978511?tag=inspiredalgor-20

    Machine Learning with TensorFlow

    地址:http://www.amazon.com/dp/1617293873?tag=inspiredalgor-20

    TensorFlow Machine Learning Cookbook

    地址:http://www.amazon.com/dp/1786462168?tag=inspiredalgor-20

    Getting Started with TensorFlow

    地址:http://www.amazon.com/dp/1786468573?tag=inspiredalgor-20

    TensorFlow for Machine Intelligence: A Hands-On Introduction to Learning Algorithms

    地址:http://www.amazon.com/dp/1939902452?tag=inspiredalgor-20

    其中最重要的一本書當然是:Yoshua Bengio 和 Ian Goodfellow 所著的《Deep Learning》(此書中文版網上已有)。

    時序序列預測

    目前時序序列預測在實際應用中主要是由 R 語言的平臺所主導。

    Time Series Analysis: Forecasting and Control

    地址:http://www.amazon.com/dp/1118675029?tag=inspiredalgor-20

    Practical Time Series Forecasting with R: A Hands-On Guide

    地址:http://www.amazon.com/dp/0997847913?tag=inspiredalgor-20

    Introduction to Time Series and Forecasting

    地址:http://www.amazon.com/dp/3319298526?tag=inspiredalgor-20

    Forecasting:principles and practice

    地址:http://www.amazon.com/dp/0987507109?tag=inspiredalgor-20

    最優質的入門介紹書籍是 Forecasting:principles and practice。

    時序序列最優質的教科書是 Time Series Analysis: Forecasting and Control。

  • 2 # Alice機器學習乾貨鋪

    《機器學習》

    周志華

    如果能把這一本書學會,那麼面試考的基本模型演算法就都不成問題。

    《Python Machine Learning》

    Sebastian Raschka

    幾乎每一章都有一個機器學習專案完整的scikit-learn程式碼:

    特徵選擇,評估矩陣,模型選擇,評估模型,調優模型

    對預處理,降維,超引數調優,模型評估等實際專案中很重要的步驟的講解也很深入,都是一邊講原理,一邊有實戰程式碼。

    還有情感分析,預測房價,影象識別等幾個專案。

    在應用模型的同時,會講解模型的具體原理,數學公式。

    理論和實踐相結合,還有對結果的實際分析。

    對於每個模型都會講到其中關鍵的問題,比如 svm 如何選擇核函式,如何選擇重要的特徵等等。

    《Hands-On Machine Learning with Scikit-Learn and TensorFlow》

    Aurélien Géron

    這本書非常好,因為只看目錄就會覺得作者的邏輯非常清晰,是能夠系統化掌握機器學習整體知識體系的一本非常不錯的書,機器學習必備。

    它的原理可能講的並不深,沒有特別複雜的數學公式,

    但是概念比較全面,而且是依照一個完整的專案流程,將核心概念串聯起來,也配有 scikit learn 的程式碼。

    它的前一部分是機器學習,用的工具是scikit learn,後一部分是深度學習,工具是Tensorflow,而且今年Tensorflow釋出了2.0版本,這本書也跟著迭代更新,裡面的程式碼全部換成了2.0版本。

  • 3 # 532967329

    理論方面看:

    2、進階級: 《elements of statistical learning》,對數學要求較高,需要惡補線性代數方面的知識。

    實戰方面:

    1.《機器學習實戰》

    2. tensorflow和sklearn的資料和開源專案

    其實,更建議您看影片教程:

    1、臺灣大學李宏毅的教學影片

    2、Andrew NG的影片

    3、臺灣大學陳軒田的影片 這些在B站都有

  • 中秋節和大豐收的關聯?
  • 除了OPPO Find X蘭博基尼版,還有哪些和汽車品牌聯名的手機,你怎樣評價這種聯名?