回覆列表
  • 1 # 察言觀語

    鐳射當然是光咯!

    鐳射的原意是受激發出的光,鐳射全稱是指受激輻射光放大,由錢學森先生建議定名為鐳射。

    什麼是受激發出的光呢?這要從發光的原理說起,電子繞著原子核亂串,比較調皮有精力的電子就會跑得比較遠,這個時候我們就把它叫做激發態,而精疲力竭的電子就跑不怎麼遠。激發態的電子不穩定,很容易像吹大了的氣球容易爆炸一樣,突然放出自己的精力,也就是攜帶的能量,變得精疲力盡,這個時候,能量沒有消失,就變成了光。電子在受熱,受輻射(例如光照),電流等情況下有可以獲得能量,變成激發態,從而繼續發光。

    以上是發光最為常見的一種情況,而受激發出的光,就是我們透過光穿過處於激發態的物質,然後這種物質吸收掉這些光,從而激發電子使之降低到低能態,放出自身攜帶的能量,發出明亮,波長一致的光線。這裡的情況就類似於我們一開始就把氣球吹到一定大小了,突然我們用一點光,讓這個氣球變得更大,氣球突然爆炸放出了更多的能量,因此,通常情況下,受激發出的光都是具有很高的能量,但是他的本質還是光。

    不過並不是所有的情況下都這樣。日光燈其實就是我們生活中常見的受激發出的光,它是由燈管內產生的紫外線,激發燈壁上塗抹的熒光粉,發出近乎純白的光,這裡的白光不想太Sunny是7色光混合而成的,而是單一波長的光,所以之前有常在日光燈下傷眼。(後面有三基色日光燈就不存在這個問題了)

    但是顯然,日光燈並非鐳射!因為鐳射的定義是受激輻射光放大。之所以日光燈不是鐳射,這是因為日光燈內產生的紫外線實際上只有40%轉化為了白光,其他的都損失掉了,而燈管管壁上的熒光粉也不是處於激發態的物質(即這個氣球並沒有事先吹大),因此無法把受激發出的光放大。

    而鐳射光源會透過通電,加熱等方式事先使工作物質(例如日光燈中的熒光粉),處於高能態(事先吹大氣球),這樣,受激發出的光會比激發它的光攜帶更多的能量,以至於多到能瞬間把東西加熱到很高溫度。

    那什麼是光呢?光通常的定義就是我們人能看到的電磁波頻段(380-780nm),有時候也指所有的電磁波。也就是說光和手機用的短波微波,是同樣的東西,都是電磁輻射。

  • 2 # 開心豆193883448

    鐳射是20世紀以來繼核能、電腦、半導體之後,人類的又一重大發明,被稱為“最快的刀”、“最準的尺”、“最亮的光”。原子受激輻射的光,故名“鐳射”:原子中的電子吸收能量後從低能級躍遷到高能級,再從高能級回落到低能級的時候,所釋放的能量以光子的形式放出。被引誘(激發)出來的光子束(鐳射),其中的光子光學特性高度一致。這使得鐳射比起普通光源,鐳射的單色性好,亮度高,方向性好。鐳射應用很廣泛,有鐳射打標、鐳射焊接、鐳射切割、光纖通訊、鐳射測距、鐳射雷達、鐳射武器、鐳射唱片、鐳射矯視、鐳射美容、鐳射掃描、鐳射滅蚊器、LIF無損檢測技術等等。

    “鐳射”的中文命名

    1964年10月,中國科學院長春光機所主辦的《光受激發射情報》(其前身為《光量子放大專刊》)雜誌編輯部致信錢學森,請他為LASER取一箇中文名字,錢學森建議中文名為“鐳射”。同年12月,上海召開第三屆光量子放大器學術會議,由嚴濟慈主持,討論後正式採納錢學森的建議,將“透過輻射受激發射的光放大”的英文縮寫LASER正式翻譯為“鐳射”。隨後,《光受激發射情報》雜誌也改名為《鐳射情報》

    鐳射原理

    光與物質的相互作用,實質上是組成物質的微觀粒子吸收或輻射光子,同時改變自身運動狀況的表現。

    微觀粒子都具有特定的一套能級(通常這些能級是分立的)。任一時刻粒子只能處在與某一能級相對應的狀態(或者簡單地表述為處在某一個能級上)。與光子相互作用時,粒子從一個能級躍遷到另一個能級,並相應地吸收或輻射光子。光子的能量值為此兩能級的能量差△E,頻率為ν=△E/h(h為普朗克常量)。1.受激吸收(簡稱吸收)

    處於較低能級的粒子在受到外界的激發(即與其他的粒子發生了有能量交換的相互作用,如與光子發生非彈

    性碰撞),吸收了能量時,躍遷到與此能量相對應的較高能級。這種躍遷稱為受激吸收。

    2.自發輻射粒子受到激發而進入的激發態,不是粒子的穩定狀態,如存在著可以接納粒子的較低能級,即使沒有外界作用,粒子也有一定的機率,自發地從高能級激發態(E2)向低能級基態(E1)躍遷,同時輻射出能量為(E2-E1)的光子,光子頻率 ν=(E2-E1)/h。這種輻射過程稱為自發輻射。眾多原子以自發輻射發出的光,不具有相位、偏振態、傳播方向上的一致,是物理上所說的非相干光。3.受激輻射、鐳射1917年愛因斯坦從理論上指出:除自發輻射外,處於高能級E2上的粒子還可以另一方式躍遷到較低能級。他指出當頻率為 ν=(E2-E1)/h的光子入射時,也會引發粒子以一定的機率,迅速地從能級E2躍遷到能級E1,同時輻射一個與外來光子頻率、相位、偏振態以及傳播方向都相同的光子,這個過程稱為受激輻射。可以設想,如果大量原子處在高能級E2上,當有一個頻率 ν=(E2-E1)/h的光子入射,從而激勵E2上的原子產生受激輻射,得到兩個特徵完全相同的光子,這兩個光子再激勵E2能級上原子,又使其產生受激輻射,可得到四個特徵相同的光子,這意味著原來的光訊號被放大了。這種在受激輻射過程中產生並被放大的光就是鐳射。

    愛因斯坦1917提出受激輻射,鐳射器卻在1960年問世,相隔43年,為什麼?主要原因是,普通光源中粒子產生受激輻射的機率極小。當頻率一定的光射入工作物質時,受激輻射和受激吸收兩過程同時存在,受激輻射使光子數增加,受激吸收卻使光子數減小。物質處於熱平衡態時,粒子在各能級上的分佈,遵循平衡態下粒子的統

    鐳射

    計分佈律。按統計分佈規律,處在較低能級E1的粒子數必大於處在較高能級E2的粒子數。這樣光穿過工作物質時,光的能量只會減弱不會加強。要想使受激輻射佔優勢,必須使處在高能級E2的粒子數大於處在低能級E1的粒子數。這種分佈正好與平衡態時的粒子分佈相反,稱為粒子數反轉分佈,簡稱粒子數反轉。如何從技術上實現粒子數反轉是產生鐳射的必要條件。

    理論研究表明,任何工作物質,在適當的激勵條件下,可在粒子體系的特定高低能級間實現粒子數反轉。若原子或分子等微觀粒子具有高能級E2和低能級E1,E2和E1能級上的布居數密度為N2和N1,在兩能級間存在著自發發射躍遷、受激發射躍遷和受激吸收躍遷等三種過程。受激發射躍遷所產生的受激發射光,與入射光具有相同的頻率、相位、傳播方向和偏振方向。因此,大量粒子在同一相干輻射場激發下產生的受激發射光是相干的。受激發射躍遷機率和受激吸收躍遷機率均正比於入射輻射場的單色能量密度。當兩個能級的統計權重相等時,兩種過程的機率相等。在熱平衡情況下N2<N1,所以自發吸收躍遷佔優勢,光透過物質時通常因受激吸收而衰減。外界能量的激勵可以破壞熱平衡而使N2>N1,

    鐳射

    這種狀態稱為粒子數反轉狀態。在這種情況下,受激發射躍遷佔優勢。光透過一段長為l的處於粒子數反轉狀態的鐳射工作物質(啟用物質)後,光強增大eGl倍。G為正比於(N2-N1)的係數,稱為增益係數,其大小還與鐳射工作物質的性質和光波頻率有關。一段啟用物質就是一個鐳射放大器。如果,把一段啟用物質放在兩個互相平行的反射鏡(其中至少有一個是部分透射的)構成的光學諧振腔中(圖1),處於高能級的粒子會產生各種方向的自發發射。其中,非軸向傳播的光波很快逸出諧振腔外:軸向傳播的光波卻能在腔內往返傳播,當它在鐳射物質中傳播時,光強不斷增長。如果諧振腔內單程小訊號增益G0l大於單程損耗δ(G0l是小訊號增益係數),則可產生自激振盪。原子的運動狀態可以分為不同的能級,當原子從高能級向低能級躍遷時,會釋放出相應能量的光子(所謂自發輻射)。

    歷史沿革

    鐳射的理論基礎起源於物理學家愛因斯坦,1917年愛因斯坦提出了一套全新的技術理論‘光與物質相互作

    用’。這一理論是說在組成物質的原子中,有不同數量的粒子(電子)分佈在不同的能級上,在高能級上的粒子受到某種光子的激發,會從高能級跳到(躍遷)到低能級上,這時將會輻射出與激發它的光相同性質的光,而且在某種狀態下,能出現一個弱光激發出一個強光的現象。這就叫做“受激輻射的光放大”,簡稱鐳射。

    1951年,美國物理學家查爾斯·哈德·湯斯設想如果用分子,而不用電子線路,就可以得到波長足夠小的無線電波。分子具有各種不同的振動形式,有些分子的振動正好和微波波段範圍的輻射相同。問題是如何將這些振動轉變為輻射。就氨分子來說,在適當的條件下,它每秒振動24,000,000,000次(24GHz),因此有可能發射波長為1.25釐米的微波。 他設想透過熱或電的方法,把能量泵入氨分子中,使它們處於“激發“狀態。然後,再設想使這些受激的分子處於具有和氨分子的固有頻率相同的微波束中---這個微波束的能量可以是很微弱的。一個單獨的氨分子就會受到這一微波束的作用,以同樣波長的束波形式放出它的能量,這一能量又繼而作用於另一個氨分子,使它也放出能量。這個很微弱的入射微波束相當於起立腳點對一場雪崩的促發作用,最後就會產生一個很強的微波束。最初用來激發分子的能量就全部轉變為一種特殊的輻射。1953年12月,湯斯和他的學生阿瑟·肖洛終於製成了按上述原理工作的的一個裝置,產生了所需要的微波束。這個過程被稱為“受激輻射的微波放大”。按其英文的首字母縮寫為M.A.S.E.R,並由之造出了單詞“maser”(脈澤)(這樣的單詞稱為首字母縮寫詞,在技術語中越來越普遍使用)。1958年,美國科學家肖洛(Schawlow)和湯斯(Townes)發現了一種神奇的現象:當他們將氖光燈泡所發射的光照在一種稀土晶體上時,晶體的分子會發出鮮豔的、始終會聚在一起的強光。根據這一現象,他們提出了"鐳射原理",即物質在受到與其分子固有振盪頻率相同的能量激發時,都會產生這種不發散的強光--鐳射。他們為此發表了重要論文,並獲得1964年的諾貝爾物理學獎。1960年5月15日,美國加利福尼亞州休斯實驗室的科學家梅曼宣佈獲得了波長為0.6943微米的鐳射,這是人類有史以來獲得的第一束鐳射,梅曼因而也成為世界上第一個將鐳射引入實用領域的科學家。1960年7月7日,西奧多·梅曼宣佈世界上第一臺鐳射器誕生,梅曼的方案是,利用一個高強閃光燈管,來激發紅寶石。由於紅寶石其實在物理上只是一種摻有鉻原子的剛玉,所以當紅寶石受到刺激時,就會發出一種紅光。在一塊表面鍍上反光鏡的紅寶石的表面鑽一個孔,使紅光可以從這個孔溢位,從而產生一條相當集中的纖細紅色光柱,當它射向某一點時,可使其達到比太陽表面還高的溫度。前蘇聯科學家尼古拉·巴索夫於1960年發明了半導體鐳射器。半導體鐳射器的結構通常由p層、n層和形成雙異質結的有源層構成。其特點是:尺寸小、耦合效率高、響應速度快、波長和尺寸與光纖尺寸適配、可直接調製、相干性好。

    分類

    鐳射系統可分為連續波鐳射器和脈衝鐳射器。大事年表1917年:愛因斯坦提出“受激發射”理論,一個光子使得受激原子發出一個相同的光子。1953年:美國物理學家Charles Townes用微波實現了鐳射器的前身:微波受激發射放大(英文首字母縮寫maser)。1957年:Townes的博士生Gordon Gould創造了“laser”這個單詞,從理論上指出可以用光激發原子,產生一束相干光束,之後人們為其申請了專利,相關法律糾紛維持了近30年。1960年:美國加州Hughes 實驗室的Theodore Maiman實現了第一束鐳射。1961年:鐳射首次在外科手術中用於殺滅視網膜腫瘤。1962年:發明半導體二極體鐳射器,這是今天小型商用鐳射器的支柱。1969年:鐳射用於遙感勘測,鐳射被射向阿波羅11號放在月球表面的反射器,測得的地月距離誤差在幾米範圍內。1971年:鐳射進入藝術世界,用於舞臺光影效果,以及鐳射全息攝像。英國籍匈牙利裔物理學家Dennis Gabor憑藉對全息攝像的研究獲得諾貝爾獎。1974年:第一個超市條形碼掃描器出現。1975年:IBM投放第一臺商用鐳射印表機。1978年:飛利浦製造出第一臺鐳射盤(LD)播放機,不過價格很高。1982年:第一臺緊湊碟片(CD)播放機出現,第一部CD盤是美國歌手Billy Joel在1978年的專輯52nd Street。鐳射

    1983年:里根總統發表了“星球大戰”的演講,描繪了基於太空的鐳射武器。

    1988年:北美和歐洲間架設了第一根光纖,用光脈衝來傳輸資料。1990年:鐳射用於製造業,包括積體電路和汽車製造。1991年:第一次用鐳射治療近視,海灣戰爭中第一次用鐳射制導導彈。1996年:東芝推出數字多用途光碟(DVD)播放器。2008年:法國神經外科學家使用廣導纖維鐳射和微創手術技術治療了腦瘤。2010年:美國國家核安全管理局(NNSA)表示,透過使用192束鐳射來束縛核聚變的反應原料、氫的同位素氘(質量數2)和氚(質量數3),解決了核聚變的一個關鍵困難。2011年3月,研究人員研製的一種牽引波鐳射器能夠移動物體,未來有望能移動太空飛船。2013年1月,科學家已經成功研製出可用於醫學檢測的牽引光束。2014年6月5日美國航天局利用鐳射束把一段時長37秒、名為“你好,世界!”的高畫質影片,只用了3.5秒就成功傳回,相當於傳輸速率達到每秒50兆,而傳統技術下載需要至少10分鐘。

    基本特性

    定向發光

    普通光源是向四面八方發光。要讓發射的光朝一個方向傳播,需要給光源裝上一定的聚光裝置,如汽車的車前燈和探照燈都是安裝有聚光作用的反光鏡,使輻射光彙集起來向一個方向射出。鐳射器發射的鐳射,天生就是朝一個方向射出,光束的發散度極小,大約只有0.001弧度,接近平行。1962年,人類第一次使用鐳射照射月球,地球離月球的距離約38萬公里,但鐳射在月球表面的光斑不到兩公里。若以聚光效果很好,看似平行的探照燈光柱射向月球,按照其光斑直徑將覆蓋整個月球。天文學家相信,外星人或許正使用閃爍的鐳射作為一種宇宙燈塔來嘗試與地球進行聯絡。

    亮度極高

    在鐳射發明前,人工光源中高壓脈衝氙燈的亮度最高,與太陽的亮度不相上下,而紅寶石鐳射器的鐳射亮度,能超過氙燈的幾百億倍。因為鐳射的亮度極高,所以能夠照亮遠距離的物體。紅寶石鐳射器發射的光束在月球上產生的照度約為0.02勒克斯(光照度的單位),顏色鮮紅,鐳射光斑肉眼可見。若用功率最強的探照燈照射月球,產生的照度只有約一萬億分之一勒克斯,人眼根本無法察覺。鐳射亮度極高的主要原因是定向發光。大量光子集中在一個極小的空間範圍內射出,能量密度自然極高。鐳射的亮度與Sunny之間的比值是百萬級的,而且它是人類創造的。鐳射的顏色鐳射的顏色取決於鐳射的波長,而波長取決於發出鐳射的活性物質,即被刺激後能產生鐳射的那種材料。刺激紅寶石就能產生深玫瑰色的鐳射束,它應用於醫學領域,比如用於面板病的治療和外科手術。公認最貴重的氣體之一的氬氣能夠產生藍綠色的鐳射束,它有諸多用途,如鐳射印刷術,在顯微眼科手術中也是不可缺少的。半導體產生的鐳射能發出紅外光,因此我們的眼睛看不見,但它的能量恰好能"解讀"鐳射唱片,並能用於光纖通訊。但有的鐳射器可調節輸出鐳射的波長。鐳射分離技術鐳射分離技術主要指鐳射切割技術和鐳射打孔技術。鐳射分離技術是將能量聚焦到微小的空間,可獲得105~1015W/cm2極高的輻照功率密度,利用這一高密度的能量進行非接觸、高速度、高精度的加工方法。在如此高的光功率密度照射下,幾乎可以對任何材料實現鐳射切割和打孔。鐳射切割技術是一種擺脫傳統的機械切割、熱處理切割之類的全新切割法,具有更高的切割精度、更低的粗糙度、更靈活的切割方法和更高的生產效率等特點。鐳射打孔方法作為在固體材料上加工孔方法之一,已成為一項擁有特定應用的加工技術,主要運用在航空、航天與微電子行業中。

    顏色極純

    光的顏色由光的波長(或頻率)決定。一定的波長對應一定的顏色。太陽輻射出的可見光段的波長分佈範圍約在0.76微米至0.4微米之間,對應的顏色從紅色到紫色共7種顏色,所以太Sunny談不上單色性。發射單種顏色光的光源稱為單色光源,它發射的光波波長單一。比如氪燈、氦燈、氖燈、氫燈等都是單色光源,只發射某一種顏色的光。單色光源的光波波長雖然單一,但仍有一定的分佈範圍。如氖燈只發射紅光,單色性很好,被譽為單色性之冠,波長分佈的範圍仍有0.00001奈米,因此氖燈發出的紅光,若仔細辨認仍包含有幾十種紅色。由此可見,光輻射的波長分佈區間越窄,單色性越好。 [1]鐳射器輸出的光,波長分佈範圍非常窄,因此顏色極純。以輸出紅光的氦氖鐳射器為例,其光的波長分佈範圍可以窄到μm級別,是氪燈發射的紅光波長分佈範圍的萬分之二。由此可見,鐳射器的單色性遠遠超過任何一種單色光源。

    能量極大

    光子的能量是用E=hv來計算的,其中h為普朗克常量,v為頻率。由此可知,頻率越高,能量越高。鐳射頻率範圍3.846×10^(14)Hz到7.895×10^(14)Hz。電磁波譜可大致分為:(1)無線電波——波長從幾千米到0.3米左右,一般的電視和無線電廣播的波段就是用這種波;(2)微波——波長從0.3米到10^-3米,這些波多用在雷達或其它通訊系統;(3)紅外線——波長從10^-3米到7.8×10^-7米;(4)可見光——這是人們所能感光的極狹窄的一個波段。波長從780—380nm。光是原子或分子內的電子運動狀態改變時所發出的電磁波。由於它是我們能夠直接感受而察覺的電磁波極少的那一部分;(5)紫外線——波長從3 ×10^-7米到6×10^-10米。這些波產生的原因和光波類似,常常在放電時發出。由於它的能量和一般化學反應所牽涉的能量大小相當,因此紫外光的化學效應最強;

    (6)倫琴射線(X射線)—— 這部分電磁波譜,

    鐳射

    波長從2×10^-9米到6×10^-12米。倫琴射線(X射線)是電原子的內層電子由一個能態跳至另一個能態時或電子在原子核電場內減速時所發出的;

    (7)伽馬射線——是波長從10^-10~10^-14米的電磁波。這種不可見的電磁波是從原子核內發出來的,放射性物質或原子核反應中常有這種輻射伴隨著發出。γ射線的穿透力很強,對生物的破壞力很大。由此看來,鐳射能量並不算很大,但是它的能量密度很大(因為它的作用範圍很小,一般只有一個點),短時間裡聚集起大量的能量,用做武器也就可以理解了。

    其他特性

    鐳射有很多特性:首先,鐳射是單色的,或者說是單頻的。有一些鐳射器可以同時產生不同頻率的鐳射,但是這些鐳射是互相隔離的,使用時也是分開的。其次,鐳射是相干光。相干光的特徵是其所有的光波都是同步的,整束光就好像一個“波列”。再次,鐳射是高度集中的,也就是說它要走很長的一段距離才會出現分散或者收斂的現象。

    鐳射對組織的生物效應

    1、熱效應2、光化學效應3、壓強作用、電磁場效應和生物刺激效應。壓強作用和電磁場效應主要由中等功率以上的鐳射所產生,光化學效應在低功率鐳射照射時特別重要,熱效應存在於所有的鐳射照射,而生物刺激作用只發生在弱鐳射照射時。

    安全防護

    鐳射波長與眼睛傷害:在鐳射的傷害中,以機體中眼睛的傷害最為嚴重。波長在可見光和近紅外光的鐳射,眼屈光介質的吸收率較低,透射率高,而屈光介質的聚焦能力(即聚光力)強。強度高的可見或近紅外光進入眼睛時可以透過人眼屈光介質,聚積光於視網膜上。此時視網膜上的鐳射能量密度及功率密度提高到幾千甚至幾萬倍,大量的光能在瞬間聚中於視網膜上,致視網膜的感光細胞層溫度迅速升高,以至使感光細胞凝固變性壞死而失去感光的作用。鐳射聚於感光細胞時產生過熱而引起的蛋白質凝固變性是不可逆的損傷。一旦損傷以後就會造成眼睛的永久失明。鐳射的波長不同對眼球作用的程度不同,其後果也不同。遠紅外鐳射對眼睛的損害主要以角膜為主,這是因為這類波長的鐳射幾乎全部被角膜吸收,所以角膜損傷最重,主要引起角膜炎和結膜炎,患者感到眼睛痛,異物樣刺激、怕光、流眼淚、眼球充血,視力下降等。發生遠紅外光損傷時應遮住保護傷眼,防止感染髮生,對症處理。紫外鐳射對眼的損傷主要是角膜和晶狀體,此波段的紫外鐳射幾乎全部被眼的晶狀體吸收,而中遠以角膜吸收為主,因而可致晶狀體及角膜混濁。 [2]

    鐳射器通常都會標示有著安全等級編號的鐳射警示標籤: [3]第1級 (Class I/1):通常是因為光束被完全的封閉在內,例如在CD或DVD播放器內。第2級 (Class II/2):在正常使用狀況下是安全的,這類裝置通常功率低於1mW,例如鐳射指示器。第3 a/R級 (Class IIIa/3R):功率通常會達到5mW,注視這種光束幾秒鐘會對視網膜造成立即的傷害。第3b/B級 (Class IIIb/3B):在暴露下會對眼睛造成立即的損傷。第4級 (Class IV/4):鐳射會燒灼面板,即使散射的鐳射光(200W以上)也會對眼睛和面板造成傷害。利用鐳射的熱能,可以製造新型的烹飪工具。以上情況是指在鐳射直射眼睛的情況下所發生的。如果間接觀察鐳射,任何200W以下的鐳射的丁達爾效應都不會對眼睛造成影響。

    發展前景

    鐳射功率已不足以描述切割能力的大小,亮度(Brightness)才是。亮度的定義是“單位面積單位立體角的鐳射功率”。對比CO2鐳射器、碟片鐳射器和光纖鐳射器,可以得出這樣的結論:直到5千瓦,以光纖鐳射的亮度最大,切割金屬板最快最厚的當屬光纖鐳射。但實際上切割厚板尚不如CO2鐳射,儘管碳鋼對近紅外的1.07摻鐿光纖鐳射的吸收率數倍於中紅外10.6的CO2鐳射,但10倍於光纖鐳射波長的CO2鐳射之切縫比光纖的寬得多(一般2mm),氧氣易於吹入。 這就是CO2鐳射46年來一直獨佔固體鐳射之鰲頭的緣由。第一,中國產鐳射切割機的量產與自主開發力度的加大,外國一線公司在華本土化的生產,縮小了二者的產品差距與價格差距。使用者對中國產機的認同度不斷提高,其在2010年國內市場的佔比高達80%。第二,2010年中國千瓦以上大功率CO2鐳射切割機銷量達1000臺,佔全球市場的20%-25%。上海團結普瑞瑪、大族鐳射、武漢法利萊、奔騰楚天等一線廠商都有大幅的增長。最多一家竟佔了國內市場的30%。市場興旺得力於擴大內需,但主要是這種加工手段的魅力,特別在鐵路鋼鐵、工程機械、汽車造船、航空航天和軍工等高階市場的旺盛需求。2014年市場難料,但可深信一點,2013年大起,2014年絕不會大落,作為製造大國的中國,保有量不會低於10000臺。須知2000年前的10年中國的總量才280臺。第三,中國大功率鐳射切割裝備的產業鏈遠未形成,尚無自主智慧財產權的新型大功率鐳射器,無論鐳射器還是切割機的關鍵元部件都得依賴進口。價昂的電容切割頭及作為耗材的光學鏡片等的研發生產,迄今都無人問津。成不了國內配套,進軍海外市場不過是夢想。唯有待到中國產整機批量出口之日,才是中國這一產業的形成之時。第四,光纖鐳射是當前的熱門話題。ROFIN與TRUMPF分別收購NUFERN與SPI公司發展光纖鐳射已三年,今春上海慕尼黑鐳射展上,ROFIN展出了2KW光纖鐳射器,但全球高功率光纖鐳射器市場依然是IPG一統天下。繼上年SALVAGNINI與LASER PHOTONICS等公司展出用其的光纖鐳射器之切割機後,2010年11月在亞特蘭大的FABTECH 與漢諾威的EUROBLECH 展會上又推出愈來愈多的光纖鐳射切割機。欣喜的是一批海歸博士矢志回國創業,建立了武漢銳科光纖鐳射、西安炬光等公司,研發生產高功率光纖鐳射器與二極體鐳射泵源,相信有自主智慧財產權的4KW連續波光纖鐳射器不久將會呈現在華人面前。發展前景鐳射的空間控制性和時間控制性很好,對加工物件的材質、形狀、尺寸和加工環境的自由度都很大,特別適用於自動化加工,鐳射加工系統與計算機數控技術相結合可構成高效自動化加工裝置,已成為企業實行適時生產的關鍵技術,為優質、高效和低成本的加工生產開闢了廣闊的前景。透過將鐳射束集中在單分子上,ETH Zurich的科學家只用單個分子就產生鐳射運作的基本條件──受激發射(stimulated emission)。由於在低溫下,分子會增加它們的外表面積(apparent surface area)來跟光線互動,因此研究人員將分子冷卻到攝氏零下272度,也就是隻比絕對零度高1度兩條光束瞄準單分子在受控制的模式下,利用一道鐳射束來讓單個分子進入量子態(controlled fashion),研究人員如此能明顯的縮減或是放大第二道鐳射束。這種運作模式與傳統的電晶體如出一轍;電晶體內的電位(electrical potential)能用來調變第二個訊號。不過ETH Zurich並未透露其單分子的化學方程式。由於其效能與散熱效能的優勢,光子運算技術是科學家們長期追求的目標;光子(photon)不僅發熱比電子少,也能達到高出相當多的資料傳輸速率。不過光通訊技術卻只能逐步地從長距離通訊,進展到短距離通訊,再進入單系統中。

    應用領域

    鐳射加工技術是利用鐳射束與

    物質相互作用的特性對材料(包括金屬與非金屬)進行切割、焊接、表面處理、打孔、微加工以及做為光源,識別物體等的一門技術,傳統應用最大的領域為鐳射加工技術。鐳射技術是涉及到光、機、電、材料及檢測等多門學科的一門綜合技術,傳統上看,它的研究範圍一般可分為:

    1.鐳射加工系統。包括鐳射器、導光系統、加工機床、控制系統及檢測系統。2.鐳射加工工藝。包括切割、焊接、表面處理、打孔、打標、劃線、微雕等各種加工工藝。鐳射焊接:汽車車身厚薄板、汽車零件、鋰電池、心臟起搏器、密封繼電器等密封器件以及各種不允許焊接汙染和變形的器件。2013年使用的鐳射器有YAG鐳射器,CO2鐳射器和半導體泵浦鐳射器。鐳射切割:汽車行業、計算機、電氣機殼、木刀模業、各種金屬零件和特殊材料的切割、圓形鋸片、壓克力、彈簧墊片、2mm以下的電子機件用銅板、一些金屬網板、鋼管、鍍錫鐵板、鍍亞鉛鋼板、磷青銅、電木板、薄鋁合金、石英玻璃、矽橡膠、1mm以下氧化鋁陶瓷片、航天工業使用的鈦合金等等。使用鐳射器有YAG鐳射器和CO2鐳射器。鐳射筆

    鐳射筆:又稱為鐳射指示器、指星筆等,是把可見鐳射設計成便攜、手易握、鐳射模組(二極體)加工成的筆型發射器。常見的鐳射筆有紅光(650-660nm, 635nm)、綠光(515-520nm, 532nm)、藍光(445-450nm)和藍紫光(405nm)等,功率通常以毫瓦為單位。通常在會報、教學、導賞人員都會使用它來投映一個光點或一條光線指向物體,但鐳射會傷害到眼睛,任何情況下都不應該讓鐳射直射眼睛。 [4]鐳射治療:可以用於手術開刀,減輕痛苦,減少感染。鐳射打標:在各種材料和幾乎所有行業均得到廣泛應用,2013年使用的鐳射器有YAG鐳射器、CO2鐳射器和半導體泵浦鐳射器。鐳射打孔:鐳射打孔主要應用在航空航天、汽車製造、電子儀表、化工等行業。鐳射打孔的迅速發展,主要體現在打孔用YAG鐳射器的平均輸出功率已由2008年的400w提高到了800w至1000w。國內2013年比較成熟的鐳射打孔的應用是在人造金剛石和天然金剛石拉絲模的生產及鐘錶和儀表的寶石軸承、飛機葉片、多層印刷線路板等行業的生產中。2013年使用的鐳射器多以YAG鐳射器、CO2鐳射器為主,也有一些準分鐳射器、同位素鐳射器和半導體泵浦鐳射器。鐳射熱處理:在汽車工業中應用廣泛,如缸套、曲軸、活塞環、換向器、齒輪等零部件的熱處理,同時在航空航天、機床行業和其它機械行業也應用廣泛。中國的鐳射熱處理應用遠比國外廣泛得多。2013年使用的鐳射器多以YAG鐳射器,CO2鐳射器為主。鐳射快速成型:將鐳射加工技術和計算機數控技術及柔性製造技術相結合而形成。多用於模具和模型行業。2013年使用的鐳射器多以YAG鐳射器、CO2鐳射器為主。鐳射塗敷:在航空航天、模具及機電行業應用廣泛。2013年使用的鐳射器多以大功率YAG鐳射器、CO2鐳射器為主。鐳射成像:利用鐳射束掃描物體,將反射光束反射回來,得到的排布順序不同而成像。用影象落差來反映所成的像。鐳射成像具有超視距的探測能力,可用於衛星鐳射掃描成像,未來用於遙感測繪等科技領域。

    醫學

    鐳射在醫學上的應用主要分三類:鐳射生命科學研究、鐳射診斷、鐳射治療,其中鐳射治療又分為:鐳射手術治療、弱鐳射生物刺激作用的非手術治療和鐳射的光動力治療。應用於牙科的鐳射系統依據鐳射在牙科應用的不同作用,分為幾種不同的鐳射系統。區別鐳射的重要特徵之一是:光的波長,不同波長的鐳射對組織的作用不同,在可見光及近紅外光譜範圍的光線,吸光性低,穿透性強,可以穿透到牙體組織較深的部位,例如氬離子鐳射、二極體鐳射或Nd:YAG鐳射(如圖1)。而Er:YAG鐳射和CO,鐳射的光線穿透性差,僅能穿透牙體組織約0.01毫米。區別鐳射的重要特徵之二是:鐳射的強度(即功率),如在診斷學中應用的二極體鐳射,其強度僅為幾個毫瓦特,它有時也可用在鐳射顯示器上。

    用於治療的鐳射,通常是幾個瓦特中等強度的鐳射。鐳射對組織的作用,還取決於鐳射脈衝的發射方式,以典型的連續脈衝發射方式的鐳射有:氬離子鐳射、二極體鐳射、CO2,鐳射;以短脈衝方式發射的鐳射有:Er:YAG鐳射或許多Nd:YAG鐳射,短脈衝式的鐳射的強度(即功率)可以達到1,000瓦特或更高,這些強度高、吸光性也高的鐳射,只適用於清除硬組織。

      

    鐳射美容(1)鐳射在美容界的用途越來越廣泛。色素沉著,如太田痣、鮮紅斑痣、雀斑、老年斑、毛細血管擴張等,以及去紋身、洗眼線、洗眉、治療瘢痕等;而2013年以前一些新型的鐳射儀,高能超脈衝CO2鐳射,鉺鐳射進行除皺、磨皮換膚、治療打鼾,美白牙齒等等,取得了良好的療效,為鐳射外科開闢越來越廣闊的領域。(2)鐳射手術有傳統手術無法比擬的優越性。首先鐳射手術不需要住院治療,手術切口小,術中不出血,創傷輕,無瘢痕。例如:眼袋的治療傳統手術法存在著由於剝離範圍廣、術中出血多,術後癒合慢,易形成瘢痕等缺點,而應用高能超脈衝CO2鐳射儀治療眼袋,則以它術中不出血,不需縫合,不影響正常工作,手術部位水腫輕,恢復快,無瘢痕等優點,令傳統手術無法比擬。而一些由於出血多而無法進行的內窺鏡手術,則可由鐳射切割代替完成。(注:有一定的適應範圍)(3)鐳射在血管性面板病以及色素沉著的治療中成效卓越。使用脈衝染料鐳射治療鮮紅斑痣,療效顯著,對周圍組織損傷小,幾乎不落疤。它的出現,成為鮮紅斑痣治療史上的一次革命,因為鮮紅斑痣治療史上,放射、冷凍、電灼、手術等方法,其瘢痕發生率均高,並常出現色素脫失或沉著。鐳射治療血管性面板病是利用含氧血紅蛋白對一定波長的鐳射選擇性的吸收,而導致血管組織的高度破壞,其具有高度精確性與安全性,不會影響周圍鄰近組織。因此,鐳射治療毛細血管擴張也是療效顯著。此外,由於可變脈衝鐳射等相繼問世,使得不滿意紋身的去除,以及各類色素性面板病如太田痣,老年斑等的治療得到了重大突破。這類鐳射根據選擇性光熱效應理論,(即不同波長的鐳射可選擇性地作用於不同顏色的面板損害),利用其強大的瞬間功率,高度集中的輻射能量及色素選擇性,極短的脈寬,使鐳射能量集中作用於色素顆粒、將其直接汽化、擊碎,透過淋巴組織排出體外,而不影響周圍正常組織,並且以其療效確切,安全可靠,無瘢痕,痛苦小而深入人心。(4)鐳射外科開創了醫學美容的新紀元。高能超脈衝CO2鐳射磨皮換膚術開拓了美容外科的新技術。它利用高能量,極短脈衝的鐳射,使老化、損傷的面板組織瞬間被汽化,不傷及周圍組織,治療過程中幾乎不出血,並可精確的控制作用深度。其效果得到國際醫學整形美容界充分肯定,被譽為“開創了醫學美容新紀元”;此外,更有高能超脈衝CO2鐳射儀治療眼袋、打鼾、甚至鐳射美白牙齒等,以其安全精確的療效,簡便快捷的治療在醫學美容界創造了一個又一個奇蹟。鐳射美容使得醫學美容向前邁進了一大步,並且賦予醫學美容更新的內涵。鐳射去除面部黑痣鐳射去黑痣的原理就在於將鐳射在瞬間爆發出的巨大能量置於色素組織中,把色素打碎並分解,使其可以被巨噬細胞吞併掉,而後會隨著淋巴迴圈系統排出體外,由此達到將色素去去掉的目的。鐳射去痣可以適用的痣的型別很多,比如包括上面提到的三種色素痣、太田痣、鮮紅斑痣等,療效都很明顯,並且不容易留疤,風險性小。用二氧化碳鐳射亦能去黑痣。鐳射治療近視

    提示下情況的患者不適合接受鐳射治療:第一. 眼部活動性炎症及病變;第二. 眼周化膿性病灶;第三. 已確診

    的圓錐角膜;第四. 嚴重乾眼症,伴有系統性乾燥綜合徵;第五. 中央角膜厚度低於450μm;第六. 嚴重的眼附屬器病變:眼瞼缺損、變形、慢性淚囊炎等;第七. 全身結締組織病及嚴重自身免疫性疾病,如系統性紅斑狼瘡、類風溼性關節炎、多發性硬化。

    相對禁忌證1.超高度近視伴後鞏膜葡萄腫者;2. 初次手術前角膜中央平均曲率低於39D或高於47D應慎重;3. 暗光下瞳孔直徑大於7mm;4. 對側眼為法定盲眼;5. 2年內曾患單純皰疹性角膜炎;6. 輕度白內障;7. 有視網膜脫離及黃斑出血病史;8. 輕度乾眼症;9. 輕度瞼裂閉合不全;10. 可疑青光眼患者;11. 月經期及妊娠期;12. 瘢痕體質;13. 糖尿病;14. 感冒發燒等身體不適;15. 癲癇;16. 焦慮症、抑鬱症以及對手術期望過高者。鐳射除皺鐳射除皺是透過電腦控制的、低能量的二氧化碳鐳射,能準確地控制汽化面板表層的深度,完成分層汽化、無碳化的面部除皺護膚技術。鐳射用於消除皺紋的技術,是鐳射技術應用於臨床以後,並幾經改進、完善與不斷更新後的結果。原理:皺紋產生的主要原因是面板膠原減少,真皮層變薄。運用最新鐳射-射頻聯合技術照射面板,可使真皮層增厚、減少皺紋,其原理是:刺激受損的膠原層,產生新的膠原質,從而填平因膠原減少而出現褶皺的面板;加熱真皮組織層,利用人體自身修復機能刺激組織再生重建,使真皮層增厚。合理設計的鐳射可以透過面板中的黑色素、血紅蛋白,尤其是水吸收鐳射釋放的能量,併產生光熱效應使之轉化為熱量,從而啟用真皮中成纖維細胞等各種基質細胞產生新生的膠原蛋白、彈性蛋白以及各種細胞間基質,併發生組織重構,就象是給慵懶的面板做運動一樣,使其透過鍛鍊而重新煥發年輕活力。數次治療之後的面板含水量及彈性增加,質地改善,細小皺紋減少。適應症:1、原發性症狀:[3]口周皺紋、眶周皺紋、萎縮性(凹陷性)疤痕、良性面板贅生物(腫瘤);2、面板粗糙、毛孔粗大、細小皺紋等面板老化表現以及炎性痤瘡或痤瘡後瘢痕等。高能超脈衝鐳射能夠把周圍組織的熱損傷降到最低程度。微小皺紋和凹陷疤痕也可進行精確磨削。超脈衝鐳射能避免以往機械磨皮法、化學剝脫術出血多,飛濺的血液、組織細屑可使病毒在病人與病人間、病人與醫務人員間傳播等不足,透過氣化病變組織來徹底消除面板損害,並使正常面板的熱損傷極小,這一過程的作用時間快於使周圍的正常組織也被加熱的所需時間,具有磨皮去皺的功能。

    軍事

    鐳射武器是一種利用定向發射的鐳射束直接毀傷目標或使之失效的定向能武器。根據作戰用途的不同,鐳射武器可分為戰術鐳射武器和戰略鐳射武器兩大類。武器系統主要由鐳射器和跟蹤、瞄準、發射裝置等部分組成,2013年通常採用的鐳射器有化學鐳射器、固體鐳射器、CO2鐳射器等。鐳射武器具有攻擊速度快、轉向靈活、可實現精確打擊、不受電磁干擾等優點,但也存在易受天氣和環境影響等弱點。鐳射武器已有30多年的發展歷史,其關鍵技術也已取得突破,美國、俄羅斯、法國、以色列等國都成功進行了各種鐳射打靶試驗。2013年低能鐳射武器已經投入使用,主要用於干擾和致盲較近距離的光電感測器,以及攻擊人眼和一些增強型觀測裝置;高能鐳射武器主要採用化學鐳射器,按照現有的水平,今後5—10年內可望在地面和空中平臺上部署使用,用於戰術防空、戰區反導和反衛星作戰等。鐳射武器特點高度集束的鐳射,能量也非常集中。舉例說;在日常生活中我們認為太陽是非常亮的,但一臺巨脈衝紅寶石鐳射器發出的鐳射卻比太陽還亮200億倍。當然,鐳射比太陽還亮,並不是因為它的總能量比太陽還大,而是由於它的能量非常集中。例如,紅寶石鐳射器發出的鐳射射束,能穿透一張1/3釐米厚的鋼板,但總能量卻不足以煮熟一個雞蛋。鐳射作為武器,有很多獨特的優點。首先,它可以用光速飛行,每秒30萬公里,任何武器都沒有這樣高的速度。它一旦瞄準,幾乎不要什麼時間就立刻擊中目標,用不著考慮提前量。另外,它可以在極小的面積上、在極短的時間裡集中超過核武器100萬倍的能量,還能很靈活地改變方向,沒有任何發射性汙染。鐳射武器分為三類:一是致盲型。(鐳射劍)前面我們講過的機載致盲武器,就屬於這一類。二是近距離戰術型,可用來擊落導彈和飛機。1978年美國進行的用鐳射打陶式反坦克導彈的試驗,就是用的這類武器。還有科幻電影中,透過對鐳射武器的形變,產生的鐳射盾翼三是遠距離戰略型。這類的研製困難最大,但一旦成功,作用也最大,它可以反衛星、反洲際彈道導彈,成為最先進的防禦武器。鐳射怎樣擊毀目標呢?科學家們認為有兩個方面:一是穿孔,二是層裂。所謂穿孔,就是高功率密度的鐳射束使靶材表面急劇熔化,進而汽化蒸發,汽化物質向外噴射,反衝力形成衝擊波,在靶材上穿一個孔。所謂層裂,就是靶材表面吸收鐳射能量後,原子被電離,形成等離體“雲”。“雲”向外膨脹噴射形成應力波向深處傳播。應力波的反射造成靶材被拉斷,形成“層裂”破壞。除此以外,等離子體“雲”還能輻射紫外線或X光,破壞目標結構和電子元件。 鐳射武器作用的面積很小,但破壞在目標的關鍵部位上,可造成目標的毀滅性破壞。這和驚天動地的核武器相比,完全是兩種風格。鐳射武器的分類:不同功率密度,不同輸出波形,不同波長的鐳射,在與不同目標材料相互作用時,會產生不同的殺傷破壞效應。用鐳射作為“死光”武器,不能像在鐳射加工中那樣藉助於透鏡聚焦,而必須大大提高鐳射器的輸出功率,作戰時可根據不同的需要選擇適當的鐳射器。2013年時,鐳射器的種類繁多,名稱各異,有體積整整佔據一幢大樓、功率為上萬億瓦、用於引發核聚變的鐳射器,也有比人的指甲還小、輸出功率僅有幾毫瓦、用於光電通訊的半導體鐳射器。按工作介質區分,目前有固體鐳射器、液體鐳射器和分子型、離子型、準分子型的氣體鐳射器等。同時,按其發射位置可分為天基、陸基、艦載、車載和機載等型別,按其用途還可分為戰術型和戰略型兩類。1.戰術鐳射武器戰術鐳射武器是利用鐳射作為能量,是像常規武器那樣直接殺傷敵方人員、擊毀坦克、飛機等,打擊距離一般可達20公里。這種武器的主要代表有鐳射槍和鐳射炮,它們能夠發出很強的鐳射束來打擊敵人。1978年3月,世界上的第一支鐳射槍在美國誕生。鐳射槍的樣式與普通步槍沒有太大區別,主要由四大部分組成:鐳射器、激勵器、擊發器和槍托。2013年,國外已有一種紅寶石袖珍式鐳射槍,外形和大小與美國的派克鋼筆相當。但它能在距人幾米之外燒燬衣服、燒穿皮肉,且無聲響,在不知不覺中致人死命,並可在一定的距離內,使火藥爆炸,使夜視儀、紅外或鐳射測距儀等光電裝置失效。還有7種稍大重量與機槍相仿的小巧鐳射槍,能擊穿銅盔,在1500米的距離上燒傷皮肉、致瞎眼睛等。 戰術鐳射武器的"挖眼術"不但能造成飛機失控、機毀人亡,或使炮手喪失戰鬥能力,而且由於參戰士兵不知對方鐳射武器會在何時何地出現,常常受到沉重的心理壓力。因此,鐳射武器又具有常規武器所不具備的威懾作用。1982年英阿馬島戰爭中,英國在航空母艦和各類護衛艦上就安裝有鐳射致盲武器,曾使阿根廷的多架飛機失控、墜毀或誤入英軍的射擊火網。2.戰略鐳射武器戰略鐳射武器可攻擊數千公里之外的洲際導彈;可攻擊太空中的偵察衛星和通訊衛星等。例如,1975年11月,美國的兩顆監視導彈發射井的偵察衛星在飛抵西伯利亞上空時,被前蘇聯的“反衛星”陸基鐳射武器擊中,並變成“瞎子”。因此,高基高能鐳射武器是奪取宇宙空間優勢的理想武器之一,也是軍事大國不惜耗費巨資進行激烈爭奪的根本原因。據外刊透露,自70年代以來,美俄兩國都分別以多種名義進行了數十次反衛星鐳射武器的試驗。 2013年,反戰略導彈鐳射武器的研製種類有化學鐳射器、準分子鐳射器、自由電子鐳射器和調射線鐳射器。例如:自由電子鐳射器具有輸出功率大、光束質量好、轉換效率高、可調範圍寬等優點。但是,自由電子鐳射器體積龐大,只適宜安裝在地面上,供陸基鐳射武器使用。作戰時,強鐳射束首先射到處於空間高軌道上的中斷反射鏡。中斷反射鏡將鐳射束反射到處於低軌道的作戰反射鏡,作戰反射鏡再使鐳射束瞄準目標,實施攻擊。透過這樣的兩次反射,設定在地面的自由電子鐳射武器,就可攻擊從世界上任何地方發射的戰略導彈。 高基高能鐳射武器是高能鐳射武器與航天器相結合的產物。當這種鐳射器沿著空間軌道遊弋時,一旦發現對方目標,即可投入戰鬥。由於它部署在宇宙空間,居高臨下,視野廣闊,更是如虎添翼。在實際戰鬥中,可用它對對方的空中目標實施閃電般的攻擊,以摧毀對方的偵察衛星、預警衛星、通訊衛星、氣象衛星,甚至能將對方的洲際導彈摧毀在助推的上升階段。3.鐳射動力推進器既然太陽不足以推動恆星際太空飛船,於是有科學家提出了鐳射動力推進器技術,利用一束強大的鐳射讓物體飛行。鐳射雷達(laser radar)是指用鐳射器作為輻射源的雷達。鐳射雷達是鐳射技術與雷達技術相結合的產物 。由發射機 、天線 、接收機 、跟蹤架及資訊處理等部分組成。發射機是各種形式的鐳射器,如二氧化碳鐳射器、摻釹釔鋁石榴石鐳射器、半導體鐳射器及波長可調諧的固體鐳射器等;天線是光學望遠鏡;接收機採用各種形式的光電探測器,如光電倍增管、半導體光電二極體、雪崩光電二極體、紅外和可見光多元探測器件等。鐳射雷達採用脈衝或連續波2種工作方式,探測方法分直接探測與外差探測。

    通訊

    鐳射通訊,是鐳射在大氣空間傳輸的一種通訊方式。鐳射大氣通訊的傳送裝置主要由鐳射器(光源)、光調製器、光學發射天線(透鏡)等組成;接收裝置主要由光學接收天線、光檢測器等組成。資訊傳送時,先轉換成電訊號,再由光調製器將其調製在鐳射器產生的鐳射束上,經光學天線發射出去。資訊接收時,光學接收天線將接收到的光訊號聚焦後,送至光檢測器恢復成電訊號,再還原為資訊。大氣鐳射通訊的容量大、保密性好,不受電磁干擾。但鐳射在大氣中傳輸時受雨、霧、雪、霜等影響,衰耗要增大,故一般用於邊防、海島、跨越江河等近距離通訊,以及大氣層外的衛星間通訊和深空通訊。早期的鐳射大氣通訊所用光源多數為二氧化碳鐳射器、氦-氖鐳射器等。二氧化碳鐳射器輸出鐳射波長為10.6微米,此波長正好處在大氣通道傳輸的低損耗視窗,是較為理想的通訊光源。從70年代末到80年代中期,由於在技術實現上難以解決好全天候、高機動性、高靈活性、穩定性等問題,鐳射大氣通訊的研究陷入低潮。1988年,巴西宣佈研製成功一種行動式半導體鐳射大氣通訊系統。這種透過鐳射器聯通線路的軍用紅外通訊裝置,其外形如同一架雙筒望遠鏡,在上面安裝了鐳射二極體和麥克風。使用時,一方將雙筒鏡對準另一方即可實現通訊,通訊距離為1千米,如果將光學天線固定下來,通訊距離可達15千米。1989年,美國成功地研製出一種短距離、隱蔽式的大氣鐳射通訊系統。1990年,美國試驗了適用於特種戰爭和低強度戰爭需要的紫外光波通訊,這種通訊系統完全符合戰術任務的要求,通訊距離為2~5千米;如果對光束進行適當處理,通訊距離可達5~10千米。90年代初,俄羅斯研製成功了大功率半導體鐳射器,並開始了鐳射大氣通訊系統技術的實用化研究。不久便推出了10千米以內的半導體鐳射大氣通訊系統並在莫斯科、瓦洛涅什、圖拉等城市應用。在瓦涅什河兩岸相距4千米的兩個電站之間,架設起了半導體鐳射大氣通訊系統,該系統可同時傳輸8路數字電話。在距離瓦洛涅什城約200千米以及在距莫斯科不遠的地方,也開通了半導體鐳射大氣通訊系統線路。隨著半導體鐳射器的不斷成熟、光學天線製作技術的不斷完善、訊號壓縮編碼等技術的合理使用,鐳射大氣通訊正重新煥發出生機。鐳射測速鐳射測速是對被測物體進行兩次有特定時間間隔的鐳射測距,取得在該一時段內被測物體的移動距離,從而得到該被測物體的移動速度。因此,鐳射測速具有以下幾個特點:1、由於該鐳射光束基本為射線,估測速距離相對於雷達測速有效距離遠,可測1000M外;2、測速精度高,誤差<1公里;3、鑑於鐳射測速的原理,鐳射光束必須要瞄準垂直與鐳射光束的平面反射點,又由於被測車輛距離太遠、且處於移動狀態,或者車體平面不大,而導致鐳射測速成功率低、難度大,特別是執勤警員的工作強度很大、很易疲勞;4、鑑於鐳射測速的原理,鐳射測速器不可能具備在運 動中使用,只能在靜止狀態下應用;因此,鐳射測速儀不能稱之為“流動電子警察”。在靜止狀態下使用時,司機很容易發現有檢測,因此達不到預期目的;5、價格昂貴,2013年經過正規途徑進口的鐳射測速儀(不含取景和控制部分)價格至少在一萬美金左右。

    工業

    鐳射在工業上,也應用極為廣泛,因為鐳射在鐳射束聚焦在材料表面的時候能夠使材料熔化,使鐳射束與材料沿一定軌跡作相對運動,從而形成一定形狀的切縫。七十年代後,為了改善和提高火焰切割的切口質量,又推廣了氧乙烷精密火焰切割和等離子切割。在工業生產中有一定的適用範圍。鐳射玻璃鐳射玻璃是一種以玻璃為基質的固體鐳射材料。它廣泛應用於各型別固體鐳射光器中,併成為高功率和高能量鐳射器的主要鐳射材料。鐳射玻璃由基質玻璃和啟用離子兩部分組成。鐳射玻璃各種物理化學性質主要由基質玻璃決定,而它的光譜性質則主要由啟用離子決定。但是基質玻璃與啟用離子彼此間互相作用,所以啟用離子對鐳射玻璃的物理化學性質有一定的影響,而基質玻璃對它的光譜性質的影響有時還是相當重要的。鐳射冷卻鐳射冷卻(laser cooling)利用鐳射和原子的相互作用減速原子運動以獲得超低溫原子的高新技術。這一重要技術早期的主要目的是為了精確測量各種原子引數,用於高解析度鐳射光譜和超高精度的量子頻標(原子鐘),後來卻成為實現原子玻色-愛因斯坦凝聚的關鍵實驗方法。鐳射冷卻有許多應用,如:原子光學、原子刻蝕、原子鐘、光學晶格、光鑷子、玻色-愛因斯坦凝聚、原子鐳射、高解析度光譜以及光和物質的相互作用的基礎研究等等。鐳射光譜光譜(laser spectra)以鐳射為光源的光譜技術。與普通光源相比,鐳射光源具有單色性好、亮度高、方向性強和相干性強等特點,是用來研究光與物質的相互作用,從而辨認物質及其所在體系的結構、組成、狀態及其變化的理想光源。鐳射的出現使原有的光譜技術在靈敏度和解析度方面得到很大的改善。由於已能獲得強度極高、脈衝寬度極窄的鐳射,對多光子過程、非線性光化學過程以及分子被激發後的弛豫過程的觀察成為可能,並分別發展成為新的光譜技術。鐳射光譜學已成為與物理學、化學、生物學及材料科學等密切相關的研究領域。鐳射感測器鐳射感測器(laser transducer)利用鐳射技術進行測量的感測器。它由鐳射器、鐳射檢測器和測量電路組成。鐳射感測器是新型測量儀表,它的優點是能實現無接觸遠距離測量,速度快,精度高,量程大,抗光、電干擾能力強等。鐳射是最準的尺。鐳射測雲儀利用鐳射在大氣層中的衰減來判斷雲層。具體的是當鐳射在大氣層中傳越時,由於發射的能量與接收的能量之間有能量差,利用能量的衰減度與雲層的水分子的含量多少來判斷雲層結構和距離的儀器。核聚變中國著名物理學家王淦昌院士1964年就提出了鐳射核聚變的初步理論,從而使中國在這一領域的科研工作走在當時世界各國的前列。1974年,中國採用一路鐳射驅動聚氘乙烯靶發生核反應,並觀察到氘氘反應產生的中子。此外,著名理論物理學家于敏院士在20世紀70年代中期就提出了鐳射透過入射口、打進重金屬外殼包圍的空腔、以 X光輻射驅動方式實現鐳射核聚變的概念。1986年,中國鐳射核聚變實驗裝置“神光”研製成功,聶榮臻元帥還專門寫信祝賀。

    研究進展

    操作鐳射

    美國得克薩斯州大學的科學家研製出世界上功率最強大的可操作鐳射,這種鐳射每萬億分之一秒產生的能量是美國所有發電廠發電量的2000倍,輸出功率超過1 拍瓦-相當於10的15次方瓦。這種鐳射第一次啟動是在1996年。馬丁尼茲說,希望他的專案能夠在2008年打破這一紀錄,也就是說,讓鐳射的功率達到1.3拍瓦到1.5拍瓦之間。超級鐳射專案負責人麥卡爾·馬丁尼茲表示:“我們可以讓材料進入一種極端狀態,這種狀態在地球上是看不到的。我們打算在德州觀察的現象相當於進入太空觀察一顆正在爆炸的恆星。”鐳射“抓住”碳奈米管並使之移動美國伊利諾伊州紐約大學的科學家和一家光學公司的科研人員試驗了一種名為“光學捕獲”的技術,試圖更便利地操縱碳奈米管。光學捕獲技術就是利用鐳射能捕獲微小粒子的能力,在移動鐳射束時使微小粒子跟隨鐳射移動。由於鐳射能捕獲微小粒子,因此在它移動時就會像鑷子一樣,“夾”著微小粒子移動。科學家把這種現象稱為“鐳射鑷子”。2013年時生物學家已能用鐳射鑷子夾住單個細胞。例如,從血液中分離出單個血紅細胞用於研究鐮刀狀血紅細胞貧血症或瘧疾治療研究。鐳射鑷子能“夾”住微小粒子,是因為鐳射束中心強度大於邊緣強度,因此當鐳射束照射一個微小粒子時,從中心折射的光線要比向前的光線多。當折射的光線獲得向外的衝力時,粒子上的反作用力就使衝力指向鐳射束中心,因此粒子總是被吸引到鐳射束中心。如果粒子非常小且具有很小的重力或摩擦力,當鐳射束移動時,粒子就會跟著移動。然而,鐳射鑷子移動的血細胞直徑有幾微米,但2013年以前要移動直徑僅2~20奈米的碳奈米管會麻煩得多。因此想利用單個鐳射鑷子移動大量碳奈米管到一定位置,可能會與用原子力顯微鏡一樣費事。為此,科學家用一種液晶鐳射分離器把鐳射束分成200個可單獨控制的小鐳射束,研究人員可以控制這些鐳射束使之形成三角形、四邊形、五邊形和六邊形等形狀,從而移動大量的奈米管群,使它們在顯微鏡載片表面定位,達到移動碳奈米管的目的。光學捕捉技術的成功,受到美國加利福尼亞大學的奈米管專家、物理學家亞歷克斯·澤特爾的稱讚,他說,因為2013年還沒有一種可靠的技術能操縱大量的奈米管,而這種新的光學捕獲技術有可能應用於工業。

    傳媒實驗

    NASA演示鐳射束傳影片實驗 傳速達每秒1000多兆2014年4月美國國家航空航天局噴氣推進實驗室成功完成了一項光學技術演示驗證實驗,其特定程式“鐳射通訊科學的光學有效載荷”(OPALS)可將NASA未來航天器的通訊速率提高10至100倍。這是NASA第一次在軌道實驗室試驗光通訊。 [5]在太空任務中,使用的科學儀器越來越需要更高的通訊速率將收集到的資料傳送回地球,或者支援高資料速率的應用,如高畫質影片流。光通訊也稱為“鐳射通訊”,是一種新興的透過鐳射束傳送資料的技術。其可提供更高的資料速率,超過當前採用的射頻(RF)傳輸速度,並且具有在頻帶操作不受當前美國聯邦通訊委員會監管的優點。 [5]該專案經理馬特·亞伯拉罕森表示,光通訊已具有改變遊戲規則的潛力。許多深空探測飛行任務在執行每秒200到400千位元的通訊任務。OPALS將展示高達每秒50兆位元的傳輸速度,未來深空光通訊系統甚至會提供每秒1000多兆位元的傳速。 [5]

    首次捕捉

    2015年1月27日,《新科學家》(New Scientist)報道,利用能探測到單光子,每秒200億幀的超高速攝像機,科學家首次捕捉到了鐳射在空氣中飛行的畫面。在10分鐘內,研究者記錄了光子與空氣碰撞時產生的200萬次鐳射脈衝。該技術可用於巡查環境角落,顯示螢幕上看不到的物體,還可用在需要精準計量時間資訊的地方。蘇格蘭赫利瓦特大學的主要研究者加里皮說:“這是我們第一次看到光經過身邊時的情形。”在通常情況下,科學家只能透過物體上的反射來看到光。想看到鐳射器發出的鐳射則更加棘手,因為光子是在聚焦光束中運動,而且方向都相同。 [6]拍攝影像該相機由愛丁堡大學開發,其感光部件由單光子光敏畫素陣列構成。這些畫素有兩種特性:一是對單個光子敏感的能力——每個畫素的敏感性是人眼的10倍左右;二是它們的速度——每個畫素被啟用只要67皮秒(萬億分之一秒),比人眨一下眼的時間要快10億倍。“這些特性讓我們能實現‘飛光成像’。”裡奇說,當光在空中飛行,從物體上散射開來時,這種成像方法連光本身也能拍下來。 [6]

    相關裝置

    超快鐳射器超快鐳射器 [7] 是太阿鐳射基於SESAM鎖模技術的Amberpico系列皮秒鐳射器、Amberfemto系列飛秒鐳射器開發的鐳射器。 Amberpico系列皮秒鐳射器具有超短脈衝寬度(小於15ps)、高單脈衝能量(最大單脈衝能量30mJ)、高重複頻率(1kHz以上)和值得信賴的優良輸出效能, Amberfemto系列飛秒鐳射器脈衝寬度小於200fs,重複頻率1Hz—100kHz可選,具有優異的空間模式和卓越的功率穩定性。可以實現高效的二倍頻、三倍頻、甚至四倍頻光的輸出。波長範圍遍及紅外、綠光、紫外,波長最短可以達到266/263nm。皮秒連續鎖模鐳射器 [8]

    皮秒連續鎖模鐳射器就是脈衝寬度壓縮到ps量級(10-12s) 的“超短”脈衝連續鎖模鐳射器。按照泵浦方式,可以分為燈泵浦皮秒連續鎖模鐳射器和半導體泵浦皮秒連續鎖模鐳射器;按照鎖模方式,可以分為半導體可飽和吸收體連續鎖模皮秒鐳射器和染料連續鎖模皮秒鎖模鐳射器;按照鐳射媒質,可以分為固體皮秒連續鎖模鐳射器和光纖皮秒連續鎖模鐳射器等。 一般採用半導體可飽和吸收鏡作為鎖模器件,LD泵浦的皮秒連續鎖模鐳射器。所謂半導體可飽和吸收鏡,一般是採用外延法將半導體可飽和吸收體直接生長在半導體布拉格反射鏡上,因此被叫做可飽和半導體布拉格反射鏡(Saturable Bragg Reflector,簡稱SBR)或半導體可飽和吸收鏡(Semiconductor Saturable Absorber Mirror,簡稱SESAM)。

  • 3 # 海匯

    鐳射與普通光不同,鐳射是一種電能轉化的可見光,它具有單一方向性的物理特性,並具有電熱能量,照射生物組織會造成損傷。利用這一特性,鐳射在醫學臨床中進行了廣泛的應用,鐳射有強鐳射和弱鐳射之分,LED光源也是鐳射家族中的新型光源,屬於弱鐳射範疇,通常用來常規醫療。隨著科技水平的不斷提高,鐳射己廣泛地用在全息攝影、藝術光影、工業切割、儀器測量、軍事殺傷武器等。

  • 中秋節和大豐收的關聯?
  • 百家姓之張的由來?