正態分佈的概念:
正態分佈(Normal distribution)是一種機率分佈。正態分佈是具有兩個引數μ和σ^2的連續型隨機變數的分佈,第一引數μ是遵從正態分佈的隨機變數的均值,第二個引數σ^2是此隨機變數的方差,所以正態分佈記作N(μ,σ^2 )。遵從正態分佈的隨機變數的機率規律為取 μ鄰近的值的機率大 ,而取離μ越遠的值的機率越小;σ越小,分佈越集中在μ附近,σ越大,分佈越分散。
正態分佈的密度函式的特點是:關於μ對稱,在μ處達到最大值,在正(負)無窮遠處取值為0,在μ±σ處有拐點。它的形狀是中間高兩邊低 ,影象是一條位於x 軸上方的鐘形曲線。當μ=0,σ^2 =1時,稱為標準正態分佈,記為N(0,1)。
μ維隨機向量具有類似的機率規律時,稱此隨機向量遵從多維正態分佈。多元正態分佈有很好的性質,例如,多元正態分佈的邊緣分佈仍為正態分佈,它經任何線性變換得到的隨機向量仍為多維正態分佈,特別它的線性組合為一元正態分佈
正態分佈的概念:
正態分佈(Normal distribution)是一種機率分佈。正態分佈是具有兩個引數μ和σ^2的連續型隨機變數的分佈,第一引數μ是遵從正態分佈的隨機變數的均值,第二個引數σ^2是此隨機變數的方差,所以正態分佈記作N(μ,σ^2 )。遵從正態分佈的隨機變數的機率規律為取 μ鄰近的值的機率大 ,而取離μ越遠的值的機率越小;σ越小,分佈越集中在μ附近,σ越大,分佈越分散。
正態分佈的密度函式的特點是:關於μ對稱,在μ處達到最大值,在正(負)無窮遠處取值為0,在μ±σ處有拐點。它的形狀是中間高兩邊低 ,影象是一條位於x 軸上方的鐘形曲線。當μ=0,σ^2 =1時,稱為標準正態分佈,記為N(0,1)。
μ維隨機向量具有類似的機率規律時,稱此隨機向量遵從多維正態分佈。多元正態分佈有很好的性質,例如,多元正態分佈的邊緣分佈仍為正態分佈,它經任何線性變換得到的隨機向量仍為多維正態分佈,特別它的線性組合為一元正態分佈