1、定積分公式:積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的實函式f(x),在區間[a,b]上的定積分記為:∫(a,b)[f(x)±g(x)]dx=∫(a,b)f(x)±∫(a,b)g(x)dx∫(a,b)kf(x)dx=k∫(a,b)f(x)dx,若f(x)在[a,b]上恆為正,可以將定積分理解為在Oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。初等定積分就是計算曲線下方大的面積大小,方法將背積變數區間分成無限小的小格,再乘以響應函式值近似求和取極限,可以證明在積分變數是自變數的話,積分和導數運算是逆運算(牛頓萊布尼茲公式)
2、定積分簡介:積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。主要分為定積分、不定積分以及其他積分。積分的性質主要有線性性、保號性、極大值極小值、絕對連續性、絕對值積分等。
1、定積分公式:積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的實函式f(x),在區間[a,b]上的定積分記為:∫(a,b)[f(x)±g(x)]dx=∫(a,b)f(x)±∫(a,b)g(x)dx∫(a,b)kf(x)dx=k∫(a,b)f(x)dx,若f(x)在[a,b]上恆為正,可以將定積分理解為在Oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。初等定積分就是計算曲線下方大的面積大小,方法將背積變數區間分成無限小的小格,再乘以響應函式值近似求和取極限,可以證明在積分變數是自變數的話,積分和導數運算是逆運算(牛頓萊布尼茲公式)
2、定積分簡介:積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。主要分為定積分、不定積分以及其他積分。積分的性質主要有線性性、保號性、極大值極小值、絕對連續性、絕對值積分等。