均為|AB|=2b^2/a
【擴充套件資料】:
橢圓的就是令x=c,求出y的座標。橢圓方程為x²/a²+y²/b²=1,所以得到y=±b²/a,
而通徑是正負的兩段長度加起來,所以是2b²/a。雙曲線的做法也是一樣,令x=c,得到的結果也是2b²/a。
1.橢圓、雙曲線的通徑長均為
|AB|=2b^2/a
(其中a是長軸或實軸的1/2,b是短軸或虛軸的1/2,不論橢圓或雙曲線的焦點在x軸還是y軸都有這個結論)
2.拋物線的通徑長為
|AB|=4p
(其中p為拋物線焦準距的1/2)
3.過焦點的弦中 通徑是最短的
如果雙曲線的離心率e>根號2,則過焦點的弦以實軸為最短,即最短的焦點弦為2a
如果雙曲線的離心率e=根號2,則通徑與實軸等長,它們都是最短的焦點弦
如果雙曲線的離心率0a>0時,
|MN|=2ab^2(k^2+1)/[(bk)^2+a^2]
當k=0時,|MN|取最大值2a
均為|AB|=2b^2/a
【擴充套件資料】:
橢圓的就是令x=c,求出y的座標。橢圓方程為x²/a²+y²/b²=1,所以得到y=±b²/a,
而通徑是正負的兩段長度加起來,所以是2b²/a。雙曲線的做法也是一樣,令x=c,得到的結果也是2b²/a。
1.橢圓、雙曲線的通徑長均為
|AB|=2b^2/a
(其中a是長軸或實軸的1/2,b是短軸或虛軸的1/2,不論橢圓或雙曲線的焦點在x軸還是y軸都有這個結論)
2.拋物線的通徑長為
|AB|=4p
(其中p為拋物線焦準距的1/2)
3.過焦點的弦中 通徑是最短的
如果雙曲線的離心率e>根號2,則過焦點的弦以實軸為最短,即最短的焦點弦為2a
如果雙曲線的離心率e=根號2,則通徑與實軸等長,它們都是最短的焦點弦
如果雙曲線的離心率0a>0時,
|MN|=2ab^2(k^2+1)/[(bk)^2+a^2]
當k=0時,|MN|取最大值2a