餘角是指如果兩個角的和是一個直角,那麼稱這兩個角互為餘角,簡稱互餘,也可以說其中一個角是另一個角的餘角。
補角是一個角和另一個角的和是180度,則這個角是另一個角的補角,這兩個角互補。
餘角的性質:
同角的餘角相等。比如:∠A+∠B=90°,∠A+∠C=90°,則:∠C=∠B。
等角的餘角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D則:∠C=∠B。
補角的性質:
同角的補角相等。比如:∠A+∠B=180°,∠A+∠C=180°,則:∠C=∠B。
等角的補角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D則:∠C=∠B。
若有一角∠α,使得∠β與∠α有如下關係:
∠β+∠α=90°
且有一∠γ,使得∠β與其有如下關係:
∠β+∠γ=180°
則我們可以說∠γ是∠α的餘角的補角。
如果兩個角的和是直角,那麼稱這兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。
同角(等角)的餘角(補角)相等。
餘角是指如果兩個角的和是一個直角,那麼稱這兩個角互為餘角,簡稱互餘,也可以說其中一個角是另一個角的餘角。
補角是一個角和另一個角的和是180度,則這個角是另一個角的補角,這兩個角互補。
擴充套件資料餘角的性質:
同角的餘角相等。比如:∠A+∠B=90°,∠A+∠C=90°,則:∠C=∠B。
等角的餘角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D則:∠C=∠B。
補角的性質:
同角的補角相等。比如:∠A+∠B=180°,∠A+∠C=180°,則:∠C=∠B。
等角的補角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D則:∠C=∠B。
若有一角∠α,使得∠β與∠α有如下關係:
∠β+∠α=90°
且有一∠γ,使得∠β與其有如下關係:
∠β+∠γ=180°
則我們可以說∠γ是∠α的餘角的補角。
如果兩個角的和是直角,那麼稱這兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。
同角(等角)的餘角(補角)相等。