log的乘法一般都用換底公式來解決:
log(a)b=log(s)b/log(s)a(括號裡的是底數)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括號裡的是底數)的推導過程:
設log(s)b=M,log(s)a =N,log(a)b=R
則s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
擴充套件資料:
對數的加減乘除運算規則:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
log的乘法一般都用換底公式來解決:
log(a)b=log(s)b/log(s)a(括號裡的是底數)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括號裡的是底數)的推導過程:
設log(s)b=M,log(s)a =N,log(a)b=R
則s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
擴充套件資料:
對數的加減乘除運算規則:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)