假設座標X(a,b),Y(c,d),其中a≥c,d≥b
公式(XY兩點距離)^2=(a-c)^2 +(d-b)^2
XY與水平方向的夾角θ(銳角):tanθ=(d-b)/(a-c)
兩點間距離公式常用於函式圖形內求兩點之間距離、求點的座標的基本公式,是距離公式之一。兩點間距離公式敘述了點和點之間距離的關係。
兩條相交直線中的任何一條與另一條相疊合時必須轉動的量的量度,轉動在這兩條直線的所在平面上並繞交點進行。角度是用以量度角的單位,符號為°。一週角分為360等份,每份定義為1度(1°)。採用360這數字,因為它容易被整除。360除了1和自己,還有22個真因數,包括了7以外從2到10的數字,所以很多特殊的角的角度都是整數。實際應用中,整數的角度已足夠準確。有時需要更準確的量度,如天文學或地球的經度和緯度,除了用小數表示度,還可以把度細分為分和秒:1度為60分(60′),1分為60秒(60″)。例如40.1875° = 40°11′15″。要更準確便用小數表示秒,而不再加設單位。
假設座標X(a,b),Y(c,d),其中a≥c,d≥b
公式(XY兩點距離)^2=(a-c)^2 +(d-b)^2
XY與水平方向的夾角θ(銳角):tanθ=(d-b)/(a-c)
拓展資料兩點間距離公式常用於函式圖形內求兩點之間距離、求點的座標的基本公式,是距離公式之一。兩點間距離公式敘述了點和點之間距離的關係。
兩條相交直線中的任何一條與另一條相疊合時必須轉動的量的量度,轉動在這兩條直線的所在平面上並繞交點進行。角度是用以量度角的單位,符號為°。一週角分為360等份,每份定義為1度(1°)。採用360這數字,因為它容易被整除。360除了1和自己,還有22個真因數,包括了7以外從2到10的數字,所以很多特殊的角的角度都是整數。實際應用中,整數的角度已足夠準確。有時需要更準確的量度,如天文學或地球的經度和緯度,除了用小數表示度,還可以把度細分為分和秒:1度為60分(60′),1分為60秒(60″)。例如40.1875° = 40°11′15″。要更準確便用小數表示秒,而不再加設單位。