(1+x)/(1-x)>0
則(1+x)(1-x)>0
x^2<1
-1<x<1
(1+x)/(1-x)
=(x-1+2)/(1-x)
=-1+2/(1-x)
當-1<x<1時,-1+2/(1-x)是增函式
所以反函式存在
且0<1-x<2
1/(1-x)>1/2
2/(1-x)>1
-1+2/(1-x)>0
所以y=log2 (1+x)/ (1-x)值域是R
則反函式定義域是R
y=log2 (1+x)/ (1-x)
2^y=(1+x)/ (1-x)=-1+2/(1-x)
2/(1-x)=2^y+1
1-x=2/(2^y+1)
x=1-2/(2^y+1)=(2^y-1)/(2^y+1)
所以反函式是y=(2^x-1)/(2^x+1),x屬於R
(1+x)/(1-x)>0
則(1+x)(1-x)>0
x^2<1
-1<x<1
(1+x)/(1-x)
=(x-1+2)/(1-x)
=-1+2/(1-x)
當-1<x<1時,-1+2/(1-x)是增函式
所以反函式存在
且0<1-x<2
1/(1-x)>1/2
2/(1-x)>1
-1+2/(1-x)>0
所以y=log2 (1+x)/ (1-x)值域是R
則反函式定義域是R
y=log2 (1+x)/ (1-x)
2^y=(1+x)/ (1-x)=-1+2/(1-x)
2/(1-x)=2^y+1
1-x=2/(2^y+1)
x=1-2/(2^y+1)=(2^y-1)/(2^y+1)
所以反函式是y=(2^x-1)/(2^x+1),x屬於R