用矩陣形式表示二次型的方法:
二次型f(x,y,z)=ax²+by²+cz²+dxy+exz+fyz,用矩陣表示的時候,矩陣的元素與二次型係數的對應關係為:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。
二次型的定義:
設f(x_1,x_2,...x_n)=∑a_ij * x_i*x_j 這裡是係數, 滿足aij=aji,則稱f為n元二次型。
拓展資料
二次型:n個變數的二次多項式稱為二次型,即在一個多項式中,未知數的個數為任意多個,但每一項的次數都為2的多項式。線性代數的重要內容之一,它起源於幾何學中二次曲線方程和二次曲面方程化為標準形問題的研究。二次型理論與域的特徵有關。
術語二次型也經常用來提及二次空間,它是有序對(V,q),這裡的V是在域k上的向量空間,而q:V→k是在V上的二次形式。例如,在三維歐幾里得空間中兩個點之間的距離可以採用涉及六個變數的二次形式的平方根來找到,它們是這兩個點的各自的三個座標。
用矩陣形式表示二次型的方法:
二次型f(x,y,z)=ax²+by²+cz²+dxy+exz+fyz,用矩陣表示的時候,矩陣的元素與二次型係數的對應關係為:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。
二次型的定義:
設f(x_1,x_2,...x_n)=∑a_ij * x_i*x_j 這裡是係數, 滿足aij=aji,則稱f為n元二次型。
拓展資料
二次型:n個變數的二次多項式稱為二次型,即在一個多項式中,未知數的個數為任意多個,但每一項的次數都為2的多項式。線性代數的重要內容之一,它起源於幾何學中二次曲線方程和二次曲面方程化為標準形問題的研究。二次型理論與域的特徵有關。
術語二次型也經常用來提及二次空間,它是有序對(V,q),這裡的V是在域k上的向量空間,而q:V→k是在V上的二次形式。例如,在三維歐幾里得空間中兩個點之間的距離可以採用涉及六個變數的二次形式的平方根來找到,它們是這兩個點的各自的三個座標。