∫e^xsin²xdx= (1/2)e^x - (1/10)e^xcos2x - (1/5)e^xsin2x + C。C為積分常數。 解答過程如下: ∫ e^xsin²x dx =(1/2)∫ e^x(1-cos2x) dx =(1/2)e^x - (1/2)∫ e^xcos2x dx (1) 下面計算: ∫ e^xcos2x dx =∫ cos2x d(e^x) 分部積分 =e^xcos2x + 2∫ e^xsin2x dx =e^xcos2x + 2∫ sin2x d(e^x) 再分部積分 =e^xcos2x + 2e^xsin2x - 4∫ e^xcos2x dx 將 -4∫ e^xcos2x dx 移項與左邊合併後除以係數 得:∫ e^xcos2x dx = (1/5)e^xcos2x + (2/5)e^xsin2x + C 將上式代入(1)得 ∫ e^xsin²x dx = (1/2)e^x - (1/10)e^xcos2x - (1/5)e^xsin2x + C
∫e^xsin²xdx= (1/2)e^x - (1/10)e^xcos2x - (1/5)e^xsin2x + C。C為積分常數。 解答過程如下: ∫ e^xsin²x dx =(1/2)∫ e^x(1-cos2x) dx =(1/2)e^x - (1/2)∫ e^xcos2x dx (1) 下面計算: ∫ e^xcos2x dx =∫ cos2x d(e^x) 分部積分 =e^xcos2x + 2∫ e^xsin2x dx =e^xcos2x + 2∫ sin2x d(e^x) 再分部積分 =e^xcos2x + 2e^xsin2x - 4∫ e^xcos2x dx 將 -4∫ e^xcos2x dx 移項與左邊合併後除以係數 得:∫ e^xcos2x dx = (1/5)e^xcos2x + (2/5)e^xsin2x + C 將上式代入(1)得 ∫ e^xsin²x dx = (1/2)e^x - (1/10)e^xcos2x - (1/5)e^xsin2x + C