所謂主元法分解因式就是在分解含多個字母的代數式時,選取其中一個字母為主元(未知數),將其它字母看成是常數,把代數式整理成關於主元的降冪排列(或升冪排列)的多項式,再嘗試用公式法、配方法、分組法等分解因式的方法進行分解!
例如:
x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2
=x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2
=x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2
=[x^2-(y^2+z^2)]^2-(2yz)^2
=[x^2-(y^2+z^2)+2yz][x^2-(y^2+z^2)-2yz]
=[x^2-(y-z)^2][x^2-(y+z)^2]
=[x+(y-z)][x-(y-z)][x+(y+z)][x-(y+z)]
=(x+y-z)(x-y+z)(x+y+z)(x-y-z)
所謂主元法分解因式就是在分解含多個字母的代數式時,選取其中一個字母為主元(未知數),將其它字母看成是常數,把代數式整理成關於主元的降冪排列(或升冪排列)的多項式,再嘗試用公式法、配方法、分組法等分解因式的方法進行分解!
例如:
x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2
=x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2
=x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2
=[x^2-(y^2+z^2)]^2-(2yz)^2
=[x^2-(y^2+z^2)+2yz][x^2-(y^2+z^2)-2yz]
=[x^2-(y-z)^2][x^2-(y+z)^2]
=[x+(y-z)][x-(y-z)][x+(y+z)][x-(y+z)]
=(x+y-z)(x-y+z)(x+y+z)(x-y-z)