c(斜邊)=√(a²+b²)。(a,b為兩直角邊)
解答過程如下:
(1)在直角三角形中滿足勾股定理—在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。數學表示式:a²+b²=c²
(2)a²+b²=c²求c,因為c是一條邊,所以就是求大於0的一個根。即c=√(a²+b²)。
擴充套件資料:勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。
參考:勾股定理百度詞條
c(斜邊)=√(a²+b²)。(a,b為兩直角邊)
解答過程如下:
(1)在直角三角形中滿足勾股定理—在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。數學表示式:a²+b²=c²
(2)a²+b²=c²求c,因為c是一條邊,所以就是求大於0的一個根。即c=√(a²+b²)。
擴充套件資料:勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。
參考:勾股定理百度詞條