解:f(x)=e^x/a+a/ e^x在R上為偶函式 f(x)= f(-x) e^x/a+a/ e^x= e^-x/a+a/ e^-x e^x/a+a/ e^x=1/a*e^x +a*e^x (1/a-a) *e^x=(1/a-a) *e^-x 當1/a-a不等於0,則不成立上式 故1/a-a=0 a^2=1 a=1或-1 證明: 當a=1時f(x)= e^x+1/e^x f(x+1)= e^[x+1]+1/e^[x+1] f(x+1)-f(x)= e^[x+1]+1/e^[x+1]- e^x-1/e^x =(e-1) e^x+[(1-e)/e] e^[-x]= [(e-1) e^[2x+1]+(1-e) ]/e^[x+1] =(e-1) [e^[2x+1]-1]/ e^[x+1] 因x>0,所以e-1>0 ,e^[x+1]>0, [e^[2x+1]-1]>0 所以f(x+1)-f(x)>0 得f(x+1)> f(x)所以得證 當為-1時依舊成立同理可得
解:f(x)=e^x/a+a/ e^x在R上為偶函式 f(x)= f(-x) e^x/a+a/ e^x= e^-x/a+a/ e^-x e^x/a+a/ e^x=1/a*e^x +a*e^x (1/a-a) *e^x=(1/a-a) *e^-x 當1/a-a不等於0,則不成立上式 故1/a-a=0 a^2=1 a=1或-1 證明: 當a=1時f(x)= e^x+1/e^x f(x+1)= e^[x+1]+1/e^[x+1] f(x+1)-f(x)= e^[x+1]+1/e^[x+1]- e^x-1/e^x =(e-1) e^x+[(1-e)/e] e^[-x]= [(e-1) e^[2x+1]+(1-e) ]/e^[x+1] =(e-1) [e^[2x+1]-1]/ e^[x+1] 因x>0,所以e-1>0 ,e^[x+1]>0, [e^[2x+1]-1]>0 所以f(x+1)-f(x)>0 得f(x+1)> f(x)所以得證 當為-1時依舊成立同理可得