如圖、即可在平行四邊形中新增一條線段產生2個直角:
注意:
1、在長方形、正方形(長方形、正方形屬於平行四邊形)中會產生4個直角
2、且為了保證只有2個直角,M、O各點只能在BC段、AD段滑動
擴充套件資料:
在歐幾里德幾何中,平行四邊形是具有兩對平行邊的簡單(非自相交)四邊形。 平行四邊形的相對或相對的側面具有相同的長度,並且平行四邊形的相反的角度是相等的。相比之下,只有一對平行邊的四邊形是梯形。平行四邊形的三維對應是平行六面體。
平行四邊形的判定:
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、兩組對角分別相等的四邊形是平行四邊形(兩組對邊平行判定);
5、對角線互相平分的四邊形是平行四邊形。
補充:條件3僅在平面四邊形時成立,如果不是平面四邊形,即使是兩組對邊分別相等的四邊形,也不是平行四邊形。
如圖、即可在平行四邊形中新增一條線段產生2個直角:
注意:
1、在長方形、正方形(長方形、正方形屬於平行四邊形)中會產生4個直角
2、且為了保證只有2個直角,M、O各點只能在BC段、AD段滑動
擴充套件資料:
在歐幾里德幾何中,平行四邊形是具有兩對平行邊的簡單(非自相交)四邊形。 平行四邊形的相對或相對的側面具有相同的長度,並且平行四邊形的相反的角度是相等的。相比之下,只有一對平行邊的四邊形是梯形。平行四邊形的三維對應是平行六面體。
平行四邊形的判定:
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、兩組對角分別相等的四邊形是平行四邊形(兩組對邊平行判定);
5、對角線互相平分的四邊形是平行四邊形。
補充:條件3僅在平面四邊形時成立,如果不是平面四邊形,即使是兩組對邊分別相等的四邊形,也不是平行四邊形。