矩陣的跡作為數學概念,是由實際問題抽象得出的,要了解矩陣的跡的物理意義,還要先從它的數學意義說起。根據線性代數的知識可知,在選定線性空間的一組基底後,每一個線性變換都對應於一個矩陣,但是為線性空間選擇基底可以是很任意的,選的基底不同,一般其線性變換對應的矩陣就不同,為了研究問題,就要找到這些不同的矩陣間的共同之處,這就是矩陣的跡,也就是說,同一個線性變換,在不同基底下的矩陣雖然不同,但其這些矩陣的跡相同。多說一點,我們生活的世界是變化的,研究問題就要抓住這些變化中的不變數進行研究,例如解析幾何中對平面上的兩點,選不同的座標系會導致點的座標不同,但這兩點間的距離可以用公式求出,它是不變的,即線段長度是座標變換下的不變數,也就是我們要重點研究的物件。物理中經常要用到張量,2階張量可以用矩陣來表示(1階張量即向量,0階張量即標量),廣義相對論中用到的裡奇張量就是2階張量(用來描述時間彎曲程度),物理中參考系不同,裡奇張量的分量一般就不同,而對裡奇張量進行類似於求矩陣跡的運算後(嚴格說法是經度規升指標後求縮並),得到標量曲率R,它是不依賴於參考系的,即任何參考系看來標量曲率R是相同的,這可以算是矩陣跡的一個物理意義。
矩陣的跡作為數學概念,是由實際問題抽象得出的,要了解矩陣的跡的物理意義,還要先從它的數學意義說起。根據線性代數的知識可知,在選定線性空間的一組基底後,每一個線性變換都對應於一個矩陣,但是為線性空間選擇基底可以是很任意的,選的基底不同,一般其線性變換對應的矩陣就不同,為了研究問題,就要找到這些不同的矩陣間的共同之處,這就是矩陣的跡,也就是說,同一個線性變換,在不同基底下的矩陣雖然不同,但其這些矩陣的跡相同。多說一點,我們生活的世界是變化的,研究問題就要抓住這些變化中的不變數進行研究,例如解析幾何中對平面上的兩點,選不同的座標系會導致點的座標不同,但這兩點間的距離可以用公式求出,它是不變的,即線段長度是座標變換下的不變數,也就是我們要重點研究的物件。物理中經常要用到張量,2階張量可以用矩陣來表示(1階張量即向量,0階張量即標量),廣義相對論中用到的裡奇張量就是2階張量(用來描述時間彎曲程度),物理中參考系不同,裡奇張量的分量一般就不同,而對裡奇張量進行類似於求矩陣跡的運算後(嚴格說法是經度規升指標後求縮並),得到標量曲率R,它是不依賴於參考系的,即任何參考系看來標量曲率R是相同的,這可以算是矩陣跡的一個物理意義。