假設三個內角分別是A,B,C,則C=180-A-B
所以tanC = tan((90-A) + (90-B)) = [tan(90-A) + tan(90-B)] / [1 - tan(90-A)tan(90-B)]
= (ctgA + ctgB) / (1-ctgActgB) 《--上下同時乘以tanAtanB
= (tanA + tanB) / (tanAtanB - 1)
所以tanA + tanB + tanC
= tanA + tanB + (tanA + tanB) / (tanAtanB - 1)
= (tanA + tanB) * [1 + 1 / (tanAtanB - 1)]
= (tanA + tanB) * [tanAtanB / (tanAtanB - 1)]
= tanA * tanB * (tanA + tanB) / (tanAtanB - 1)
= tanA * tanB * tanC
假設三個內角分別是A,B,C,則C=180-A-B
所以tanC = tan((90-A) + (90-B)) = [tan(90-A) + tan(90-B)] / [1 - tan(90-A)tan(90-B)]
= (ctgA + ctgB) / (1-ctgActgB) 《--上下同時乘以tanAtanB
= (tanA + tanB) / (tanAtanB - 1)
所以tanA + tanB + tanC
= tanA + tanB + (tanA + tanB) / (tanAtanB - 1)
= (tanA + tanB) * [1 + 1 / (tanAtanB - 1)]
= (tanA + tanB) * [tanAtanB / (tanAtanB - 1)]
= tanA * tanB * (tanA + tanB) / (tanAtanB - 1)
= tanA * tanB * tanC