回覆列表
  • 1 # 小吶不帥但很實在

    ∫ (sinx)^6 dx

    =∫ [(sinx)^2]^3 dx

    =(1/8)∫ [ 1- cos2x ]^3 dx

    = (1/8)∫ [ 1- 3cos2x + 3(cos2x)^2 - (cos2x)^3 ]dx

    =(1/8)[ x - (3/2)sin2x] +(3/8)∫ (cos2x)^2 dx-(1/8)∫ (cos2x)^3 dx

    =(1/8)[ x- (3/2)sin2x ]+(3/16)∫ (1+cos4x) dx-(1/16)∫ (cos2x)^2 dsin2x

    =(1/8)[ x- (3/2)sin2x ] +(3/16)[x+(1/4)sin4x] -(1/16)∫[1- (sin2x)^2] dsin2x

    =(1/8)[ x - (3/2)sin2x ] +(3/16)[x+(1/4)sin4x]-(1/16)[sin2x- (1/3)(sin2x)^3] +C

    連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

  • 中秋節和大豐收的關聯?
  • 三元催化劑塗層材料配方?