1、代入法解二元一次方程組的步驟:
①選取一個係數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數;
②將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的.);
④將求得的未知數的值代入①中變形後的方程中,求出另一個未知數的值;
⑤用“{”聯立兩個未知數的值,就是方程組的解;
⑥最後檢驗求得的結果是否正確。
2、加減法解二元一次方程組的步驟:
①利用等式的基本性質,將原方程組中某個未知數的係數化成相等或相反數的形式;
②再利用等式的基本性質將變形後的兩個方程相加或相減,消去一個未知數,得到一個一元一次方程(一定要將方程的兩邊都乘以同一個數,切忌只乘以一邊,然後若未知數係數相等則用減法,若未知數係數互為相反數,則用加法);
④將求得的未知數的值代入原方程組中的任何一個方程中,求出另一個未知數的值;
⑥最後檢驗求得的結果是否正。
1、代入法解二元一次方程組的步驟:
①選取一個係數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數;
②將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的.);
④將求得的未知數的值代入①中變形後的方程中,求出另一個未知數的值;
⑤用“{”聯立兩個未知數的值,就是方程組的解;
⑥最後檢驗求得的結果是否正確。
2、加減法解二元一次方程組的步驟:
①利用等式的基本性質,將原方程組中某個未知數的係數化成相等或相反數的形式;
②再利用等式的基本性質將變形後的兩個方程相加或相減,消去一個未知數,得到一個一元一次方程(一定要將方程的兩邊都乘以同一個數,切忌只乘以一邊,然後若未知數係數相等則用減法,若未知數係數互為相反數,則用加法);
④將求得的未知數的值代入原方程組中的任何一個方程中,求出另一個未知數的值;
⑤用“{”聯立兩個未知數的值,就是方程組的解;
⑥最後檢驗求得的結果是否正。