重心是三角形三邊中線的交點,三線交一點可用燕尾定理證明,十分簡單。證明過程又是塞瓦定理的特例。三角形重心已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。證明:根據燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再應用燕尾定理即得AF=BF,命題得證。重心的幾條性質:
1、重心到頂點的距離與重心到對邊中點的距離之比為2:1。
2、重心和三角形3個頂點組成的3個三角形面積相等。
3、重心到三角形3個頂點距離的平方和最小。
4、在平面直角座標系中,重心的座標是頂點座標的算術平均,即其座標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角座標系——橫座標:(X1+X2+X3)/3縱座標:(Y1+Y2+Y3)/3豎座標:(Z1+Z2+Z3)/35、重心和三角形3個頂點的連線的任意一條連線將三角形面積平分。證明:剛才證明三線交一時已證。6、重心是三角形內到三邊距離之積最大的點。
重心是三角形三邊中線的交點,三線交一點可用燕尾定理證明,十分簡單。證明過程又是塞瓦定理的特例。三角形重心已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。證明:根據燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再應用燕尾定理即得AF=BF,命題得證。重心的幾條性質:
1、重心到頂點的距離與重心到對邊中點的距離之比為2:1。
2、重心和三角形3個頂點組成的3個三角形面積相等。
3、重心到三角形3個頂點距離的平方和最小。
4、在平面直角座標系中,重心的座標是頂點座標的算術平均,即其座標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角座標系——橫座標:(X1+X2+X3)/3縱座標:(Y1+Y2+Y3)/3豎座標:(Z1+Z2+Z3)/35、重心和三角形3個頂點的連線的任意一條連線將三角形面積平分。證明:剛才證明三線交一時已證。6、重心是三角形內到三邊距離之積最大的點。