簡介 假設檢驗是推斷統計中的一項重要內容。用SAS、SPSS等專業統計軟體進行假設檢驗,在假設檢驗中常見到P 值( P-Value,Probability,Pr),P 值是進行檢驗決策的另一個依據。 P 值即機率,反映某一事件發生的可能性大小。統計學根據顯著性檢驗方法所得到的P 值,一般以P < 0.05 為顯著, P <0.01 為非常顯著,其含義是樣本間的差異由抽樣誤差所致的機率小於0.05 或0.01。實際上,P 值不能賦予資料任何重要性,只能說明某事件發生的機率。 P < 0.01 時樣本間的差異比P < 0.05 時更大,這種說法是錯誤的。統計結果中顯示Pr > F,也可寫成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。 下面的內容列出了P值計算方法 (1) P值是: 1) 一種機率,一種在原假設為真的前提下出現觀察樣本以及更極端情況的機率。 2) 拒絕原假設的最小顯著性水平。 3) 觀察到的(例項的) 顯著性水平。 4) 表示對原假設的支援程度,是用於確定是否應該拒絕原假設的另一種方法。 (2) P 值的計算: 一般地,用X 表示檢驗的統計量,當H0 為真時,可由樣本資料計算出該統計量的值C ,根據檢驗統計量X 的具體分佈,可求出P 值。具體地說: 左側檢驗的P 值為檢驗統計量X 小於樣本統計值C 的機率,即:P = P{ X < C} 右側檢驗的P 值為檢驗統計量X 大於樣本統計值C 的機率:P = P{ X > C} 雙側檢驗的P 值為檢驗統計量X 落在樣本統計值C 為端點的尾部區域內的機率的2 倍: P = 2P{ X > C} (當C位於分佈曲線的右端時) 或P = 2P{ X< C} (當C 位於分佈曲線的左端時) 。若X 服從正態分佈和t分佈,其分佈曲線是關於縱軸對稱的,故其P 值可表示為P = P{| X| > C} 。 計算出P 值後,將給定的顯著性水平α與P 值比較,就可作出檢驗的結論: 如果α > P 值,則在顯著性水平α下拒絕原假設。 如果α ≤ P 值,則在顯著性水平α下接受原假設。 在實踐中,當α = P 值時,也即統計量的值C 剛好等於臨界值,為慎重起見,可增加樣本容量,重新進行抽樣檢驗。 整理自: 樊冬梅,假設檢驗中的P值. 鄭州經濟管理幹部學院學報,2002,韓志霞, 張 玲,P 值檢驗和假設檢驗。邊疆經濟與文化,2006中國航天工業醫藥,1999 P值是怎麼來的 從某總體中抽 ⑴、這一樣本是由該總體抽出,其差別是由抽樣誤差所致; ⑵、這一樣本不是從該總體抽出,所以有所不同。 如何判斷是那種原因呢?統計學中用顯著性檢驗賴判斷。其步驟是: ⑴、建立檢驗假設(又稱無效假設,符號為H0):如要比較A藥和B藥的療效是否相等,則假設兩組樣本來自同一總體,即A藥的總體療效和B藥相等,差別僅由抽樣誤差引起的碰巧出現的。⑵、選擇適當的統計方法計算H0成立的可能性即機率有多大,機率用P值表示。⑶、根據選定的顯著性水平(0.05或0.01),決定接受還是拒絕H0。如果P>0.05,不能否定“差別由抽樣誤差引起”,則接受H0;如果P<0.05或P <0.01,可以認為差別不由抽樣誤差引起,可以拒絕H0,則可以接受令一種可能性的假設(又稱備選假設,符號為H1),即兩樣本來自不同的總體,所以兩藥療效有差別。 統計學上規定的P值意義見下表 P值 碰巧的機率 對無效假設 統計意義 P>0.05 碰巧出現的可能性大於5% 不能否定無效假設 兩組差別無顯著意義 P<0.05 碰巧出現的可能性小於5% 可以否定無效假設 兩組差別有顯著意義 P <0.01 碰巧出現的可能性小於1% 可以否定無效假設 兩者差別有非常顯著意義 注意要點 理解P值,下述幾點必須注意: ⑴P的意義不表示兩組差別的大小,P反映兩組差別有無統計學意義,並不表示差別大小。因此,與對照組相比,C藥取得P<0.05,D藥取得P <0.01並不表示D的藥效比C強。 ⑵ P>0.05時,差異無顯著意義,根據統計學原理可知,不能否認無效假設,但並不認為無效假設肯定成立。在藥效統計分析中,更不表示兩藥等效。哪種將“兩組差別無顯著意義”與“兩組基本等效”相同的做法是缺乏統計學依據的。 ⑶統計學主要用上述三種P值表示,也可以計算出確切的P值,有人用P <0.001,無此必要。 ⑷顯著性檢驗只是統計結論。判斷差別還要根據專業知識。樣所得的樣本,其統計量會與總體引數有所不同,這可能是由於兩種原因
簡介 假設檢驗是推斷統計中的一項重要內容。用SAS、SPSS等專業統計軟體進行假設檢驗,在假設檢驗中常見到P 值( P-Value,Probability,Pr),P 值是進行檢驗決策的另一個依據。 P 值即機率,反映某一事件發生的可能性大小。統計學根據顯著性檢驗方法所得到的P 值,一般以P < 0.05 為顯著, P <0.01 為非常顯著,其含義是樣本間的差異由抽樣誤差所致的機率小於0.05 或0.01。實際上,P 值不能賦予資料任何重要性,只能說明某事件發生的機率。 P < 0.01 時樣本間的差異比P < 0.05 時更大,這種說法是錯誤的。統計結果中顯示Pr > F,也可寫成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。 下面的內容列出了P值計算方法 (1) P值是: 1) 一種機率,一種在原假設為真的前提下出現觀察樣本以及更極端情況的機率。 2) 拒絕原假設的最小顯著性水平。 3) 觀察到的(例項的) 顯著性水平。 4) 表示對原假設的支援程度,是用於確定是否應該拒絕原假設的另一種方法。 (2) P 值的計算: 一般地,用X 表示檢驗的統計量,當H0 為真時,可由樣本資料計算出該統計量的值C ,根據檢驗統計量X 的具體分佈,可求出P 值。具體地說: 左側檢驗的P 值為檢驗統計量X 小於樣本統計值C 的機率,即:P = P{ X < C} 右側檢驗的P 值為檢驗統計量X 大於樣本統計值C 的機率:P = P{ X > C} 雙側檢驗的P 值為檢驗統計量X 落在樣本統計值C 為端點的尾部區域內的機率的2 倍: P = 2P{ X > C} (當C位於分佈曲線的右端時) 或P = 2P{ X< C} (當C 位於分佈曲線的左端時) 。若X 服從正態分佈和t分佈,其分佈曲線是關於縱軸對稱的,故其P 值可表示為P = P{| X| > C} 。 計算出P 值後,將給定的顯著性水平α與P 值比較,就可作出檢驗的結論: 如果α > P 值,則在顯著性水平α下拒絕原假設。 如果α ≤ P 值,則在顯著性水平α下接受原假設。 在實踐中,當α = P 值時,也即統計量的值C 剛好等於臨界值,為慎重起見,可增加樣本容量,重新進行抽樣檢驗。 整理自: 樊冬梅,假設檢驗中的P值. 鄭州經濟管理幹部學院學報,2002,韓志霞, 張 玲,P 值檢驗和假設檢驗。邊疆經濟與文化,2006中國航天工業醫藥,1999 P值是怎麼來的 從某總體中抽 ⑴、這一樣本是由該總體抽出,其差別是由抽樣誤差所致; ⑵、這一樣本不是從該總體抽出,所以有所不同。 如何判斷是那種原因呢?統計學中用顯著性檢驗賴判斷。其步驟是: ⑴、建立檢驗假設(又稱無效假設,符號為H0):如要比較A藥和B藥的療效是否相等,則假設兩組樣本來自同一總體,即A藥的總體療效和B藥相等,差別僅由抽樣誤差引起的碰巧出現的。⑵、選擇適當的統計方法計算H0成立的可能性即機率有多大,機率用P值表示。⑶、根據選定的顯著性水平(0.05或0.01),決定接受還是拒絕H0。如果P>0.05,不能否定“差別由抽樣誤差引起”,則接受H0;如果P<0.05或P <0.01,可以認為差別不由抽樣誤差引起,可以拒絕H0,則可以接受令一種可能性的假設(又稱備選假設,符號為H1),即兩樣本來自不同的總體,所以兩藥療效有差別。 統計學上規定的P值意義見下表 P值 碰巧的機率 對無效假設 統計意義 P>0.05 碰巧出現的可能性大於5% 不能否定無效假設 兩組差別無顯著意義 P<0.05 碰巧出現的可能性小於5% 可以否定無效假設 兩組差別有顯著意義 P <0.01 碰巧出現的可能性小於1% 可以否定無效假設 兩者差別有非常顯著意義 注意要點 理解P值,下述幾點必須注意: ⑴P的意義不表示兩組差別的大小,P反映兩組差別有無統計學意義,並不表示差別大小。因此,與對照組相比,C藥取得P<0.05,D藥取得P <0.01並不表示D的藥效比C強。 ⑵ P>0.05時,差異無顯著意義,根據統計學原理可知,不能否認無效假設,但並不認為無效假設肯定成立。在藥效統計分析中,更不表示兩藥等效。哪種將“兩組差別無顯著意義”與“兩組基本等效”相同的做法是缺乏統計學依據的。 ⑶統計學主要用上述三種P值表示,也可以計算出確切的P值,有人用P <0.001,無此必要。 ⑷顯著性檢驗只是統計結論。判斷差別還要根據專業知識。樣所得的樣本,其統計量會與總體引數有所不同,這可能是由於兩種原因