回覆列表
  • 1 # jxf93042917

    說明一下1/cos(x)=sec(x)

    ∫secxdx

    =∫(1/cosx)dx

    =∫cosx/cos²xdx

    =∫1/cos²xdsinx

    =∫1/(1-sin²x)dsinx

    =-∫1/(sinx+1)(sinx-1)dsinx

    =-∫[1/(sinx-1)-1/(sinx+1)]/2dsinx

    =-[∫1/(sinx-1)dsinx-∫1/(sinx+1)dsinx]/2

    =[∫1/(sinx+1)d(sinx+1)-∫1/(sinx-1)d(sinx-1)]/2

    =(ln|sinx+1|-ln|sinx-1|)/2+C

    =ln√|(sinx+1)/(sinx-1)|+C

    =ln√|(sinx+1)²/(sinx+1)(sinx-1)|+C

    =ln√|(sinx+1)²/(sin²x-1)|+C

    =ln√|-(sinx+1)²/cos²x|+C

    =ln|(sinx+1)/cosx|+C

    =ln|tanx+1/cosx|+C

    =ln|secx+tanx|+C

  • 中秋節和大豐收的關聯?
  • 冬天熱車要多久才能走?