數學、物理、化學有複雜的知識體系,有嚴密的邏輯推理,因此必須在預習、聽課、複習中掌握其知識體系,才能真正記住知識內容,並做到不遺忘。
要有習題集,習題集要一本一本完美地做熟做透 。一些學校甚至提出海量練習的口號。於是學生們就只好在題海中通宵達旦、夜以繼日了。 其實做題的目的是把會的題練熟、記住,把不會題的精準的找出來、消化掉。假如只是把一本練習題做完了事,艾賓浩斯遺忘規律告訴我們,哪怕你學會的這些知識會很快遺忘;每一道不會的題目都隱含一個知識的斷接點,也就是說只有把不會的題學會才能提升水平, 因此一本數學習題集,一定要做到“熟透”為止。 一般情況下做習題集是與學校課堂教學相結合的,要達到“看到習題集中的所有問題,都能馬上想起解答的全過程”的狀態一般需要花10周來練習,用7次的精準複習。 一旦達到了這樣的狀態,那麼就可以進行下一本習題集的練習,而這時做這本習題集中的題目時就會很順暢,因為所有習題集的題目,即使題目表現不同,思考思路和解法都是差不多的,有了前面的感覺做起來會很輕鬆。 現在大部分的學生在學習數、理、化時,差不多就是做完一次作業,交給老師老師批改,老師針對作業情況進行評講,然後補錯題,個別學生也整理錯題本,但是一般在考試前不看錯題本。考前複習的時候,因為前面做過的忘了很多,可能會花上很多時間,即使做了複習,也達不到應有的7次,不能達到熟練記憶,帶著沒有理解和記住的情況,就這樣開始了第2冊的習題集,結果練習再多還是提升不了數理化實力。” 所以,按要求複習十分重要。
數理化也需要死記 理解不等與掌握,掌握需要記憶。數理化知識體系有它內在的邏輯結構,由於種種原因,有時我們不能把知識結構完全理解,為了能在短期內提高數學成績,可以採用死記的方法: 當一個問題,只要思考超過3——5分鐘還不會就不再思考,直接問老師、同學、看解答過程、看答案,理解後讀寫回顧一起用來記住,然後馬上看著題目再次解答,把記住的解答過程好好回想起來......直到能看著題目就能熟練解答為止,這時可以設定一個時間限度為20分鐘,20分鐘內一定要熟練記住。
數學記憶的臨界點是5周 理解也是記憶,理解的內容,1個月以上不重溫,照樣也會慢慢遺忘,所以提升數學的成績,複習也是必不可少的。 複習一定要按照艾賓浩斯遺忘曲線要求來做,特別是學習後的一週、2周到一個月內做,時間間隔要由小到大,這樣複習時所花時間會比較少。 所以,數學學習完一章後進行習題練習,然後按要求複習,到第5——6周的時候,所有的問題,基本上就可以達到“只要看到題目就能順暢想起並解答的狀態。” 所以,數學記憶的臨界點,是5周—要複習到所有的問題都是“順暢解答狀態”為止,一直要繼續複習下去。 由於複習與新課程學習相結合,因此,第一章、二章甚至三章的複習可能會交叉進行。只要我們按要求複習,我們學習的知識就不會忘,這就是溫故而知新。 當我們把基礎知識,練習題全部做完後,整個書本和解題技能就王全掌握,我們也與這些知識融為一體,成為知識的主人。做題將進入“順暢、流利”狀態,以後在遇到相似題目時,解答速度會急速提高,因為解答方法和過程已經變成了長期記憶,所以長時間也不會忘,而一般考試題目也只是變換個名目,應用和解答還是會具有典型的特徵,所以,只要做題時稍加理解,就能馬上想到方法。
化學的計算部分,還有像物理這樣的數學系統科目的記憶的學習,基本和數學一樣,學習法也照搬即可。
數學、物理、化學有複雜的知識體系,有嚴密的邏輯推理,因此必須在預習、聽課、複習中掌握其知識體系,才能真正記住知識內容,並做到不遺忘。
要有習題集,習題集要一本一本完美地做熟做透 。一些學校甚至提出海量練習的口號。於是學生們就只好在題海中通宵達旦、夜以繼日了。 其實做題的目的是把會的題練熟、記住,把不會題的精準的找出來、消化掉。假如只是把一本練習題做完了事,艾賓浩斯遺忘規律告訴我們,哪怕你學會的這些知識會很快遺忘;每一道不會的題目都隱含一個知識的斷接點,也就是說只有把不會的題學會才能提升水平, 因此一本數學習題集,一定要做到“熟透”為止。 一般情況下做習題集是與學校課堂教學相結合的,要達到“看到習題集中的所有問題,都能馬上想起解答的全過程”的狀態一般需要花10周來練習,用7次的精準複習。 一旦達到了這樣的狀態,那麼就可以進行下一本習題集的練習,而這時做這本習題集中的題目時就會很順暢,因為所有習題集的題目,即使題目表現不同,思考思路和解法都是差不多的,有了前面的感覺做起來會很輕鬆。 現在大部分的學生在學習數、理、化時,差不多就是做完一次作業,交給老師老師批改,老師針對作業情況進行評講,然後補錯題,個別學生也整理錯題本,但是一般在考試前不看錯題本。考前複習的時候,因為前面做過的忘了很多,可能會花上很多時間,即使做了複習,也達不到應有的7次,不能達到熟練記憶,帶著沒有理解和記住的情況,就這樣開始了第2冊的習題集,結果練習再多還是提升不了數理化實力。” 所以,按要求複習十分重要。
數理化也需要死記 理解不等與掌握,掌握需要記憶。數理化知識體系有它內在的邏輯結構,由於種種原因,有時我們不能把知識結構完全理解,為了能在短期內提高數學成績,可以採用死記的方法: 當一個問題,只要思考超過3——5分鐘還不會就不再思考,直接問老師、同學、看解答過程、看答案,理解後讀寫回顧一起用來記住,然後馬上看著題目再次解答,把記住的解答過程好好回想起來......直到能看著題目就能熟練解答為止,這時可以設定一個時間限度為20分鐘,20分鐘內一定要熟練記住。
數學記憶的臨界點是5周 理解也是記憶,理解的內容,1個月以上不重溫,照樣也會慢慢遺忘,所以提升數學的成績,複習也是必不可少的。 複習一定要按照艾賓浩斯遺忘曲線要求來做,特別是學習後的一週、2周到一個月內做,時間間隔要由小到大,這樣複習時所花時間會比較少。 所以,數學學習完一章後進行習題練習,然後按要求複習,到第5——6周的時候,所有的問題,基本上就可以達到“只要看到題目就能順暢想起並解答的狀態。” 所以,數學記憶的臨界點,是5周—要複習到所有的問題都是“順暢解答狀態”為止,一直要繼續複習下去。 由於複習與新課程學習相結合,因此,第一章、二章甚至三章的複習可能會交叉進行。只要我們按要求複習,我們學習的知識就不會忘,這就是溫故而知新。 當我們把基礎知識,練習題全部做完後,整個書本和解題技能就王全掌握,我們也與這些知識融為一體,成為知識的主人。做題將進入“順暢、流利”狀態,以後在遇到相似題目時,解答速度會急速提高,因為解答方法和過程已經變成了長期記憶,所以長時間也不會忘,而一般考試題目也只是變換個名目,應用和解答還是會具有典型的特徵,所以,只要做題時稍加理解,就能馬上想到方法。
化學的計算部分,還有像物理這樣的數學系統科目的記憶的學習,基本和數學一樣,學習法也照搬即可。