原理:全等三角形,對應邊相等。
經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。全等三角形指兩個全等的三角形,它們的三條邊及三個角都對應相等。
根據全等轉換,兩個全等三角形經過平移、旋轉、翻折後,仍舊全等。正常來說,驗證兩個全等三角形一般用邊邊邊(SSS)、邊角邊(SAS)、角邊角(ASA)、角角邊(AAS)、和直角三角形的斜邊,直角邊(HL)來判定。
判定方法:
1、SSS(Side-Side-Side)(邊邊邊):三邊對應相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(邊角邊):兩邊及其夾角對應相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角邊角):兩角及其夾邊對應相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角邊):兩角及其一角的對邊對應相等的三角形全等。
5、RHS(Right angle-Hypotenuse-Side)(直角、斜邊、邊)(又稱HL定理(斜邊、直角邊)):在一對直角三角形中,斜邊及另一條直角邊相等。(它的證明是用SSS原理)
原理:全等三角形,對應邊相等。
經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。全等三角形指兩個全等的三角形,它們的三條邊及三個角都對應相等。
根據全等轉換,兩個全等三角形經過平移、旋轉、翻折後,仍舊全等。正常來說,驗證兩個全等三角形一般用邊邊邊(SSS)、邊角邊(SAS)、角邊角(ASA)、角角邊(AAS)、和直角三角形的斜邊,直角邊(HL)來判定。
示例如下圖拓展判定方法:
1、SSS(Side-Side-Side)(邊邊邊):三邊對應相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(邊角邊):兩邊及其夾角對應相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角邊角):兩角及其夾邊對應相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角邊):兩角及其一角的對邊對應相等的三角形全等。
5、RHS(Right angle-Hypotenuse-Side)(直角、斜邊、邊)(又稱HL定理(斜邊、直角邊)):在一對直角三角形中,斜邊及另一條直角邊相等。(它的證明是用SSS原理)