回覆列表
  • 1 # 使用者2455194551313

    居然沒有割圓術?

    利用圓內接或外切正多邊形,求圓周率近似值的方法,其原理是當正多邊形的邊數增加時,它的邊長和逐漸逼近圓周。早在公元前5世紀,古希臘學者安蒂豐為了研究化圓為方問題就設計一種方法:先作一個圓內接正四邊形,以此為基礎作一個圓內接正八邊形,再逐次加倍其邊數,得到正16邊形、正32邊形等等,直至正多邊形的邊長小到恰與它們各自所在的圓周部分重合,他認為就可以完成化圓為方問題。到公元前3世紀,古希臘科學家阿基米德在《論球和圓柱》一書中利用窮竭法建立起這樣的命題:只要邊數足夠多,圓外切正多邊形的面積與內接正多邊形的面積之差可以任意小。阿基米德又在《圓的度量》一書中利用正多邊形割圓的方法得到圓周率的值小於三又七分之一而大於三又七十分之十 ,還說圓面積與外切正方形面積之比為11:14,即取圓周率等於22/7。公元263年,中國數學家劉徽在《九章算術注》中提出“割圓”之說,他從圓內接正六邊形開始,每次把邊數加倍,直至圓內接正96邊形,算得圓周率為3.14或157/50,後人稱之為徽率。書中還記載了圓周率更精確的值3927/1250(等於3.1416)。劉徽斷言“割之彌細,所失彌少,割之又割,以至於不可割,則與圓合體,而無所失矣”。其思想與古希臘窮竭法不謀而合。割圓術在圓周率計算史上曾長期使用。1610年德國數學家柯倫用2^62邊形將圓周率計算到小數點後35位。1630年格林貝爾格利用改進的方法計算到小數點後39位,成為割圓術計算圓周率的最好結果。分析方法發明後逐漸取代了割圓術,但割圓術作為計算圓周率最早的科學方法一直為人們所稱道。

  • 中秋節和大豐收的關聯?
  • 法拉利贊助商有哪些?