定理描述:
若
$y_{n+1}>y_n (n=1,2,\cdots)$
$\lim\limits_{n\rightarrow\infty}y_n=+\infty$
$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$存在
則 $\lim\limits_{n\rightarrow\infty}\frac{x_n}{y_n}=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$
證:假定$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,並注意到$y_n\rightarrow +\infty$,可知,對於任給的$\varepsilon >0$,存在正整數N,使當n>N時恆有
$\mid \frac{x_{n+1}-x_n}{y_{n+1}-y_n}-a\mid <\frac{\varepsilon}{2} (且y_n>0)$
於是,分數(當n>N時)
$\frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},\frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}\cdots ,\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$
都包含在$(a-\frac{\varepsilon}{2},a+\frac{\varepsilon}{2})$之間(由極限的定義可直接得出),因為$y_{n+1}>y_n$,所以這些分數的分母都是正數,於是,得
$(a-\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})<x_{N+2}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})$,
$(a-\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})<x_{N+3}-x_{N+2}<(a+\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})$,
$\vdots$
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{n})<x_{n+1}-x_{n}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{n})$,
相加之,得
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})<x_{n+1}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})$
即$a-\frac{\varepsilon}{2}<\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}<a+\frac{\varepsilon}{2}$,所以當n>N時,恆有$\mid \frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a\mid <\frac{\varepsilon}{2}$(注意N是確定的).另外我們有(當n>N時)
$\frac{x_n}{y_n}-a=\frac{x_{N+1}-ay_{N+1}}{y_n}+(1-\frac{y_{N+1}}{y_n})(\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,
故$\mid \frac{x_n}{y_n}-a\mid \leq\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid +\frac{\varepsilon}{2}$,
現取正整數N">N,使當n>N"時,恆有
$\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid <\frac{\varepsilon}{2}$,
於是,當n>N"時,恆有$\mid \frac{x_n}{y_n}-a\mid <\varepsilon$.
由此可知,$\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=a=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.證畢.
注:條件3中換為$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+\infty(或-\infty)$.,則結論任然成立(也就是極限都不存在)
定理描述:
若
$y_{n+1}>y_n (n=1,2,\cdots)$
$\lim\limits_{n\rightarrow\infty}y_n=+\infty$
$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$存在
則 $\lim\limits_{n\rightarrow\infty}\frac{x_n}{y_n}=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$
證:假定$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,並注意到$y_n\rightarrow +\infty$,可知,對於任給的$\varepsilon >0$,存在正整數N,使當n>N時恆有
$\mid \frac{x_{n+1}-x_n}{y_{n+1}-y_n}-a\mid <\frac{\varepsilon}{2} (且y_n>0)$
於是,分數(當n>N時)
$\frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},\frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}\cdots ,\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$
都包含在$(a-\frac{\varepsilon}{2},a+\frac{\varepsilon}{2})$之間(由極限的定義可直接得出),因為$y_{n+1}>y_n$,所以這些分數的分母都是正數,於是,得
$(a-\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})<x_{N+2}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})$,
$(a-\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})<x_{N+3}-x_{N+2}<(a+\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})$,
$\vdots$
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{n})<x_{n+1}-x_{n}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{n})$,
相加之,得
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})<x_{n+1}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})$
即$a-\frac{\varepsilon}{2}<\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}<a+\frac{\varepsilon}{2}$,所以當n>N時,恆有$\mid \frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a\mid <\frac{\varepsilon}{2}$(注意N是確定的).另外我們有(當n>N時)
$\frac{x_n}{y_n}-a=\frac{x_{N+1}-ay_{N+1}}{y_n}+(1-\frac{y_{N+1}}{y_n})(\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,
故$\mid \frac{x_n}{y_n}-a\mid \leq\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid +\frac{\varepsilon}{2}$,
現取正整數N">N,使當n>N"時,恆有
$\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid <\frac{\varepsilon}{2}$,
於是,當n>N"時,恆有$\mid \frac{x_n}{y_n}-a\mid <\varepsilon$.
由此可知,$\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=a=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.證畢.
注:條件3中換為$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+\infty(或-\infty)$.,則結論任然成立(也就是極限都不存在)