回覆列表
  • 1 # 陀螺—上帝擲出的骰子

    現代磁學研究中的物理模型及定理有哪些?它們在磁研究中各有什麼優點和缺點?下文將與您一道趟過磁學發展長河,回眸磁學經典,尋求磁學研究真諦:

    磁陀螺運動與現代物理學漫談(5)——現代磁學研究中的物理模型及定理

    司 今[email protected]

    在物理學發展史中,磁與電學曾是二門各種獨立的物理學科,且磁學發展要比電學早,但對磁現象作深入的定量研究卻落後於電學。

    自17世紀,庫倫用扭秤確立了靜電庫倫定理後,他已隱約感到,磁也應存在這種規律,於是他仿照靜電學對電荷的測量方法,得出磁體磁極間的相互作用也符合平方反比規律,如果將磁體的二個磁極分別規定為磁荷,如N極為正磁荷,S為負磁荷,就會得出庫倫磁荷定理——由此開啟了靜磁學研究的科學之門。

    後來,奧斯特實驗將電與磁聯絡在一起,再透過法拉第、安培、畢奧薩伐爾、洛倫茲、麥克斯韋等的接力,最終建立起了現代的電磁學理論體系。

    就磁陀螺運動研究而言,應屬於經典靜磁學範疇,用靜磁學的一些理論去描述、詮解磁陀螺在磁場中的運動會更切合實際。

    在經典的磁場理論中,一個最基本的公式就是庫倫磁極公式F=kmqm1qm2/r2,但磁極與電場理論中電荷的概念不一樣,電場中獨立的正負電荷可以單獨存在,而單獨的正負磁極實際上是不存在的,磁極從來都是成對出現的。正負磁極一般稱為磁北極和磁南極,為了避免這種理論上的困難,經典磁場理論認為一個非常細長磁鐵中的一個磁極則可以被近似地被看作是一個單獨的磁極;根據這一個假設,從而可以得出一個單獨磁極在磁場中所受的力與磁極本身的強度成正比、與磁極所在地點的磁場強度成正比關係。

    經典磁場理論中,絕大多數公式都是正確的,並一直沿用至今,但在整個理論中體系中最根本的問題是它採用了一個實際上並不存在的所謂單獨的“磁極”假設,這正是經典磁學理論中所謂“庫倫磁方法”的一個致命弱點。

    1、磁極

    人類認識磁性、磁場屬性等都是從磁極開始的,所謂磁極就是如圖-1所示,如果將一塊條形磁鐵投入到碎鐵屑中,再取出時可以發現,靠近磁鐵二極的地方吸引鐵屑特別多,即磁性特別強,這塊磁性特別強的區域就稱為磁極,中部沒有磁性的區域叫做磁中性區;磁極之間遵循“同極相斥、異極向吸”原則。

    從廣度和深度而論,磁鐵的這些特性對與宏觀的偶磁極恆星、行星、磁陀螺、小磁針等,微觀的偶磁極原子核、質子、中子、電子等都應適用。

    磁極概念是磁荷思想的起源。

    2、磁荷模型與庫倫磁定理

    2.1、磁荷模型

    在電學中,點電荷模型是與牛頓力學質點模型相銜接的,按磁荷觀點建立的模型也是如此;同點電荷一樣,點磁荷也要求“自身的幾何線度遠小於它與場點之間距離”的磁體,如一根細長磁針兩端的磁極就可以看作是點磁荷(如圖-2)。

    在早期的磁理論中,磁荷與電荷完全對稱的,如圖-3.1、2,但由於一直沒有找到像電荷一樣能夠獨立存在的單磁荷,故點磁荷模型就被後來的磁偶極子模型所取代。

    2.2、庫倫磁荷定理

    電荷之間相互作用的基本規律遵守庫侖電荷定律,磁荷之間相互作用的基本規律則是庫侖磁荷定律,它是整個磁荷理論的出發點。早在得到電荷庫侖定律之前,庫侖就透過實驗方法得到了兩個點磁荷之間相互作用的規律,即磁庫侖定律。

    如圖-4,與電偶極子類比,一個“小磁針”可以看成,是一個磁偶極子,在它的兩端各帶正、負磁荷(設N極帶有正磁荷+qm, S帶負磁荷-qm)。庫倫用精心設計的實驗證明,點磁荷1、2之間也服從類似點電荷之間的庫倫定律式:F=kmqm1qm2/r2= qm1qm2/4πμ0 r2.

    雖然單極磁荷並不存在,但庫倫磁荷定理卻反映了磁體磁場的分佈規律及二個磁體之間相互作用的規律,因此,它在經典磁學研究中仍佔有重要位置,並起重要的定量作用。

    3、偶極子模型與磁矩原理

    庫倫點磁荷模型同牛頓質點概念一樣,存在弊端:牛頓質點或庫倫點磁荷模型都不可能將磁體或自旋粒子看做是具有偶極性的,只能被認為是單級性的;

    對於偶極磁體或自旋磁粒子而言,將不可能再沿用經典質點或磁荷概念來建立模型,因為,再小的偶極磁體或自旋磁粒子都不可能有單級屬性,這是經典質點力學、庫倫磁荷理論與偶極磁體或自旋磁粒子最難以融合的地方,於是就誕生了磁偶極子模型。

    磁偶極子是類比電偶極子(如圖-5)而建立的物理模型。具有等值異號的兩個點磁荷構成的系統稱為磁偶極子(如圖-6);比如,一個自旋磁陀螺就可以視為一個磁偶極子,地磁場也可以看作是由磁偶極子產生的場。

    磁偶極子受到力矩作用會發生轉動,只有當力矩為零時,磁偶極子才會處於平衡狀態——認識這一點很重要,它是研究自旋偶極磁體在磁場中運動的立論核心。

    利用這個道理,可以進行磁場測量。但由於沒有發現單獨存在的磁單極子,因此磁偶極子的物理模型不再是兩個磁單極子,而是由一段封閉迴路電流所產生的磁偶所取代。

    由於磁偶極子模型能夠很好地描述小尺度閉合電路元產生的磁場分佈 ,故我們將一個載有電流的圓形迴路作為磁偶極子的模型(如圖-7),常用磁矩來描述磁偶極子磁性的強弱,即μ=IS,其中I為迴路電流,S為迴路面積向量,方向由電流方向決定,滿足右手定則。

    用“迴路電流”代替偶極磁子,這是安培用分子電流觀點解釋磁性起源的基本依據,也是磁極化理論建立的基礎,由此開啟了電學與磁學大融合之門。

    4、磁場模型與理論

    4.1、磁荷模型與磁場理論

    從磁荷庫倫定理上中可以看出,與電荷電場強度定義相類比,我們可以引進磁場強度H概念,即H=F/qm0,這裡F是試探點磁荷qm0所受的力。

    不過,這種磁場強度從磁荷質點角度講是一種點磁極線性磁場強度,用圖描述就是圖-8所示。

    磁荷模型給出的磁場描述存在一種弊端,那就是因磁荷不存在而表現出虛幻性,它不適於描述偶極磁體的磁場分佈規律,因質點不可能分偶極,只能是單級性。

    就法拉第磁體力線模型而言,偶極磁體(磁偶極子)的磁力線分佈呈扁南瓜型,如圖-9所示,對其緯度向的磁場強度空間分佈該如何描述呢?這時就需要引入高斯磁定理,從而使磁場理論趨以完善。

    4.2、磁磁力線模型與高斯磁定理

    4.2.1法拉第磁力線模型

    磁力線是法拉第最先“發明“並引入的;如圖-10,他在玻璃板下放置一條形磁體,並在玻璃板上灑布鐵粉,然後輕輕敲擊使板振動,則鐵粉會聯成許多細小線段,從而顯示出永久磁鐵周圍的磁場分佈,這是由於鐵粉在磁場中受力並互相吸引而形成的,法拉第將其形象地稱為磁力線;據此,他繪製出了一個簡化的磁體磁力線物理模型圖,如-10所示。

    正是在磁力線啟發下,法拉第提出了磁場是真實的物理存在,磁場作用不是突然發生的“超距作用”,而是經過力線(假想線)逐步傳遞的;但要注意,磁力線是為了形象地研究磁場而人為假想的曲線,並不是客觀存在於磁場中的真實曲線。

    現在人們瞭解到,磁場、電場都是一種特殊形態的物質,並不需要力線來解釋,因力線解釋必然會受到機械觀念的限制;但是磁力線(包括電力線)作為一種場物理模型,使比較抽象的場得到形象直觀的展現,它對初期的電磁場理論發展起著重大推動作用,而至今仍然為人們所沿用。

    法拉第力線雖是從磁鐵周圍吸引鐵屑啟示中抽象出來的,但它實際上揭示的是力作用可以用“場”來描述的思想,是對力起源問題最直觀的認知;它為後來的高斯定理和麥克斯韋方程組的出現奠定了基礎,並由此開啟了有別於牛頓力學的“場物理學”時代的正式誕生,並將牛頓的力與宏觀、微觀世界聯絡在了一起。

    4.2.2、高斯磁場定理

    高斯磁場定理是建立在法拉第力線概念之上的,他將任意麵積上穿過的力線根數總量稱為磁力線通量,即磁通量,常用Φm來表示,且有Φm=BS.

    高斯磁場定理對磁場強度的描述分二種型別:

    (1)、閉合曲面型別

    如圖-11左邊是閉合曲面例子,包括球面、環面和立方體面;穿過這些曲面的磁通量等於零。

    這時,高斯磁定律方程可以寫為兩種形式:微分形式和積分形式;根據散度定理,這兩種形式為等價的。

    高斯磁定律的微分形式為▽▪B=0 其中,B是磁場;這是麥克斯韋方程組中的一個方程。

    高斯磁定律的積分形式為∮S B·da=0,其中,S是一個閉合曲面,da是微小面積分;方程左邊項,稱為透過閉合曲面的淨磁通量,高斯磁定律闡明這淨磁通量永遠等於零。

    當然,假若將來科學家發現有磁單極子存在,則高斯磁定律就不正確了,那麼,這個定律就必須做適當修改,即磁場的散度會與磁荷密度ρm成正比:▽▪B=μ0ρm,其中,μ0 是磁常數。

    (2)、開放曲面型別

    如圖-11右邊是開放曲面,包括圓盤面、正方形面和半球面;都具有邊界(以紅色顯示),不完全圍入三維體積,穿過這些曲面的磁通量就不一定等於零。

    如圖-12所示,磁力線透過圖面所形成的磁場強度就是:磁體磁場強度H=Φm/S⊥,感應磁場強度B=Φm/S⊥.

    可見,高斯在處理磁偶極子磁場力線強度分佈時與電荷電場是有很大區別的,具體說就是,在閉合曲面磁力線強度為0的方程,它是構成麥克斯韋電磁波的重要組成部分;而在開放曲面磁力線強度可以不為0,它是解決楞次電磁感應定律的主要數學工具。

    在靜電場中,由於自然界中存在著獨立的電荷,所以電場線有起點和終點,只要閉合面內有淨餘的正(或負)電荷,穿過閉合面的電通量就不等於零,即靜電場是有源場(如圖-13.1);而在磁場中,由於自然界中沒有單獨的磁極存在,N極和S極是不能分離的,磁感線都是無頭無尾的閉合線,所以透過任何閉合面的磁通量必等於零,是無源場(如圖-13.2)。

    如果單極磁子被發現,那麼高斯磁定律的磁場分佈就與電荷電場分佈相雷同了。

    4.2.3、二種磁場模型的優缺點

    雖然自然界不存在獨立運動的磁荷,但磁荷模型是庫倫磁定理建立的基礎,是靜磁學定量不可缺少的最基本定理,同時,它還可以將磁學與牛頓質點、點電荷概念銜接起來,有利於我們認識磁體運動規律。

    磁力線也不存在,但磁力線模型可以幫助人們理解抽象的磁場屬性,同時還有利於將區域性非閉合曲面磁場強度進行定量描述。

    但我們必須認清,這二種模型都是建立在“不存在”的假設條件下的,因此,它們不可能真實反映磁體磁場及其相互作用的實際,要想將這二種個“不存在”的假設去掉,就須重新解讀法拉第力線模型的物理意義,以找出和建立能夠真正體現磁體間相互作用的新物理模型。

    由於現實中磁偶極子是真實存在的,但不可以被看作是點磁荷(如圖-14),這就決定了對它們運動的研究就不可能再用經典的磁荷概念來描述,只能從偶極子所受力矩模型中去討論自旋偶極磁體在磁場中運動所應遵循的物理規律,但目前物理學並沒有真正看清和做到這一點;現在,我們只有從質點、磁荷、磁力線概念中解放出來,才能真正看清自旋磁粒子、星體運動的物理本質,這就是我下一篇《重論法拉第力線》所要談到的內容,敬請關注!

  • 中秋節和大豐收的關聯?
  • 6月份釣鯉魚問什麼不好釣?